

ALGEBRA I ACTIVITY 7: TRANSFORMATIONS IN THE COORDINATE PLANE Tlalgebra.com

ACTIVITY OVERVIEW:

In this activity we will

- Create a polygon using coordinate pairs in lists by setting up a connected scatter plot
- Use operations on lists to translate, reflect, and dilate the polygon

Press STAT ENTER. Type in coordinates to form a polygon. In the example shown, five points are entered to form a four-sided polygon. The first and last points are the same so that the calculator will know to connect the points back to the first vertex.

L1	LZ	L3	2
5 16 11 5	-2 6 4 -3 -2		
L2(6)			

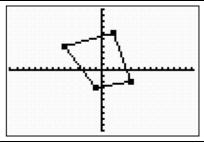
Press to the top of L3. Press to remove L3.

L1	L2	1 33	3
5 -6 -1 5	12 6 4 7 7 7		
L3 =			

Repeat to remove **L4**, **L5**, and **L6**. The screen will appear as shown here. The untitled list will be next to **L2**. The calculator will already be in Alpha mode, ready for the list to be named. Later this list will be named and used.

L1	L2	-	0
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	N _{GF} PN		
Name=			

Press 2nd Y= to prepare to set up a plot. Press ENTER or 1 to access Plot 1.



Press ENTER to turn the plot **On**. Press FINTER to turn on the "connected scatter plot" option. Use the defaults for the remaining choices.

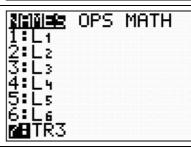
Press **Z00M** 5 to graph in a square window.

What action would move the polygon 3 units to the right? Return to the lists by pressing $\overline{\text{STAT}[\text{ENTER}]}$. You will name the next list **TR3**. At the top of the untitled list, press $\overline{\text{4}} \times \text{1}$ to access the letters "T" and "R." Press $\overline{\text{ALPHA}}$ to turn off the Alpha mode and press $\overline{\text{3}}$ to complete the list name. Press $\overline{\text{ENTER}}$.

L1	L2	1188	3
524	NO. 150.		
TR3 =			

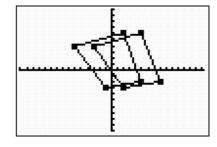
To translate the polygon 3 units to the right, add 3 to the x-coordinates. While the cursor is at the top of **TR3**, press 2nd[1+3]. This will command the calculator to access **L1** and add three to its members.

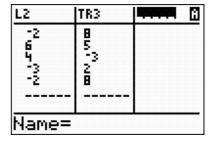
L1	L2	विश्ववि ३
5 26 11 5	2 6 4 7 2	
TR3 =L	1+3	


Press ENTER.

L1	L2	TR3 3
52615	Nagen	5 3 AB
TR3(1) =:	3	

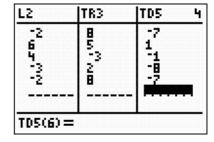
Set up **Plot 2** to graph the polygon shifted 3 units to the right. Press 2nd Y=2. Turn the plot **On** and select "connected scatter plot." While on top of **Xlist**, press 2nd STAT to access the names of all the lists.


Select **TR3** by pressing the number next to it or by going down to it and pressing ENTER.


This will identify **TR3** as the **Xlist**. The *y*-coordinates will not change, so **L2** will remain the **Ylist**.

Press GRAPH].

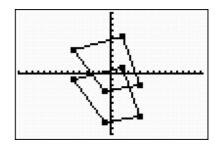
Create other lists using operations on the original *x*-and *y*-coordinates. To name a new list press STAT] ENTER. First arrow up to the top of **TR3**. Then right arrow to reveal a new unnamed list.


Follow the steps outlined previously to name the list **TD5**, meaning translate down 5 units.

L2	TR3	1103	4
NO FOL	85 ³ 28		
TDS =			

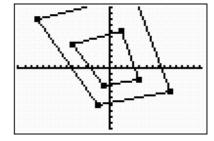
Command the calculator to subtract 5 from each member of **L2**.

L2	TR3	तावत ५
Nag 00	8 5 2 8	
TDS =L	2-5∎	


Press ENTER.

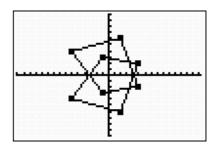
Set up Plot 2 as shown.

Press GRAPH.

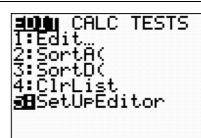

Another transformation is a dilation. Double both the original x- and y-coordinates to stretch the graph to double its length and width.

L2	DBLX	OSWN .	4
-2 6 4 -3 -2	10 4 -12 -2 10		
DBLY=2	2*L2■		

Reconfigure Plot 2.



View the graph. Adjust the window as desired.



Experiment with other rules, such as $(x, 2^*y)$, (x-3, y-3), (0.5x, 0.5y). How would you reflect the polygon across the x-axis? Across the y-axis? Across the line y=x?

Which reflection is shown here?

To recover L3, L4, L5, and L6, press STAT 5 to select the Set Up Editor command.

Press ENTER to execute the command. This will restore the lists.

