

In this activity, you will:

 Solve systems of equations by writing the augmented matrices in reduced row-echelon form

Use this document as a reference and to record your answers. *Screen captures are from the TI-84 Plus CE.

NORMAL F	LOAT	AUTO	REAL	RADIAN	MP	Ū
NAMES	MAT	TH E	DIT			
1 11 [A] 2:[B]						
3:[C] 4:[D]						
5: [E]						
6:[F] 7:[G]						
8:[H]						
9 ↑[]]						

Problem 1 – Augmented matrices and reduced row-echelon form

You have already learned how to solve systems of equations such as the one to the right by graphing and using elimination and substitution.

$$2x + 3y = 5$$
$$5x - 4y = -22$$

But what about larger systems like this one? Surely you could solve this system by elimination, but what if the system had six equations in six unknowns?

$$x-2y+3z=9$$

 $-x+3y=-4$
 $2x-5y+5z=17$

We'll explore how to solve larger systems by first solving the 2×2 system. The first step is to write an augmented matrix.

In an **augmented matrix**, each row represents an equation of the system (omitting the variables). Each column represents the coefficients of a specific variable, with the last column being the constant terms.

• Write the augmented matrix for the system $\begin{cases} 2x + 3y = 5 \\ 5x - 4y = -22 \end{cases}$ below.

x coeff y coeff const

Eqn
$$1 \rightarrow \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$
 Eqn $2 \rightarrow \begin{bmatrix} \\ \\ \\ \end{bmatrix}$

Define this to be matrix A. To do this press i and arrow to EDIT. Select matrix [A], change the numbers in the top right of the screen to 2 × 3, and then enter the numbers of the matrix.

Now you will use elementary row operations to reduce the matrix in a manner similar to using elimination.

NORMAL	FLOAT A	UTO REAL	RADIAN	MP
MATRI	X[A]	2 ×3	¬ 1	
0	0	0		
[A](1,1):	= 0			

Elementary row operations performed on an augmented matrix yield an augmented matrix of an equivalent system.

The elementary row operations are:

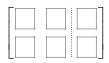
- interchange any two rows
- multiply a row by a nonzero constant
- add a multiple of a row to another row

The goal of using these elementary row operations on an augmented matrix is to rewrite the matrix in its equivalent, reduced row-echelon form.

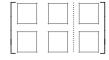
A matrix is in **reduced row-echelon form** if all of the following hold:

- All zero rows (if any) are at the bottom.
- The first nonzero entry in any nonzero row is a 1 (called a leading 1).
- Columns containing a leading 1 have zeros for all other entries.
- Each leading 1 appears to the right of leading 1s in rows above it.
- Use elementary row operations as described below to write matrix *A* in reduced row-echelon form.

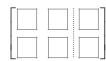
a.
$$\frac{1}{2}r_1 \to r_1$$



b.
$$-5r_1 + r_2 \to r_2$$



c.
$$-\frac{2}{23}r_2 \to r_2$$



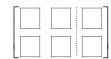
To perform elementary row operations on your calculator, use the following commands from the Matrix > MATH menu. The arguments are given in parentheses.

rowSwap(matrix, row#, row#)

- ..row(value, matrix, row#)
- ..row+(value, matrix, row#, row#)

Note: When you are performing subsequent row operations, use **Ans** as the matrix.)

$$\mathbf{d.} \ -\frac{3}{2}r_2 + r_1 \to r_1 \qquad \boxed{ \qquad \qquad }$$



You can check your answer using the **rref** command, which returns the reduced row-echelon form for a given matrix.

• Use this command on matrix A.

rref (<i>A</i>) =		

NORMAL FLOAT AUTO REAL RADIAN MP

NAMES MATE EDIT

8 **Matr **list(**

9: List **matr(**

0: cumSum(**

A: ref(**

B: rref(**

C: rowSwap(**

D: row+(**

E: **row(**

F: **row+(**)

From the reduced row-echelon form, you can easily extract the solution to the system. Since the first column represents the coefficients of x and the second column the coefficients of y, this new equivalent system is simply x = -2 and y = 3, which is the solution to our system.

- What would the reduced row-echelon form of an augmented matrix for a system with infinitely many solutions look like?
- for a system with no solutions?

Problem 2 – A 3 × 3 system

The **rref** command is very helpful when solving larger systems, but you should still know how to reduce augmented matrices yourself.

 Try it with the 3 × 3 system shown to the right. Define the augmented matrix as [A], and use the calculator to perform the elementary row operations. Check your answer using the **rref** command.

$$x-2y+3z = 9$$

 $-x+3y = -4$
 $2x-5y+5z = 17$

X = _____ *y* = _____

Z =

Problem 3 – Larger systems

• For this 4 × 4 system, write the augmented matrix and solve using the **rref** command.

$$w-2x+2y+z=1$$

 $3w-5x+6y+3z=-1$
 $-2w+4x-3y-2z=5$
 $3w-5x+y+4z=-3$

$$A = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{}$$

Solution to system w = _____ x = ____ y = ____ z = ____

Problem 4 – Curve fitting

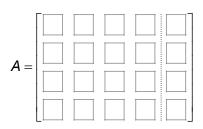
Use this method to find an equation of the form $y = ax^3 + bx^2 + cx + d$ that passes through the points (-2, -37), (-1, -11), (0, -5), and (2, 19).

First, we need to generate a system of equations. Substitute the first point for (x, y). This results in:

$$-37 = a(-2)^3 + b(-2)^2 + c(-2) + d \rightarrow -8a + 4b - 2c + d = -37$$

Do the same for each of the three remaining points and record the resulting system of equations. Then solve using the **rref** command.

System of equations:



d =

• What is the equation?

Exercises

Solve each system.

1.
$$x-3y+z=1$$

 $2x-y-2z=2$
 $x+2y-3z=-1$

2.
$$2x + 4y + z = 1$$

 $x - 2y - 3z = 2$
 $x + y - z = -1$

3.
$$x+2y-7z=-4$$

 $2x+y+z=13$
 $3x+9y-36z=-33$

4. The height of an object thrown into the air is determined by the equation $h = \frac{1}{2}at^2 + v_0t + s_0$ where *a* is the acceleration due to gravity, v_0 is the initial vertical velocity, *t* is the time in seconds, and s_0 is the initial height.

Using the following (*time, height*) data to determine a, v_0 , and s_0 for this equation. (1, 48), (2, 64), (3, 48)