\qquad

Functioning

What do you do when the Voyage ${ }^{\text {rM }} 200$ PLT does not have a function you want?

Create the function that you want!
In this exercise, you will learn to create and use functions. You'll start by creating a function with multiple arguments. From there, you'll create a function to return the derivative of an implicitly defined function. Finally, you'll use the Function Editor to create a function useful for solving related rate problems.

Instructions

Part A—Defining Functions with Multiple Arguments

1. Press $0 \mathbb{N}$ to turn on the Voyage ${ }^{\text {TM }} 200$ PLT. To reset to the default settings, press 2nd [MEM] [F1, select 1:RAM, select 2:Default, and then press ENTER ENTER.

Press [CALC Home] to access the Home screen. Delete all values of one-character variables by pressing [F6, selecting 1:Clear a-z, and pressing ENTER.

On the Home screen, clear the entry line by pressing CLEAR once or twice. Clear the History area above the entry line by pressing F1 8 .
2. Functions sometimes require more than one argument. Suppose that you wish to solve the equation $\log _{x} 9.84=3.29$.

Define a function for a logarithm to an arbitrary base b as follows.
Press DEFINE LOGBB U LN U U LN BENTER.

To solve the equation, press SOLVELOGB X 9.84 \qquad 3.29 , $\mathbf{x} \square$ ENTER.
$x=$

Functioning on Your Own (Continued)

3. To verify that your solution is correct, press

2nd [ANS] ^ $\mathbf{3 . 2 9}$ [ENTER.
Your answer should be 9.84 because
$\log _{x} 9.84=3.29 \leftrightarrow x^{3.29}=9.84$.

Part B—Defining an Implicit Differentiation Function

A function can return more than a number. In fact, you can define functions to return lists, matrices, expressions, and even equations.

In calculus, sometimes you need to find derivatives of functions defined implicitly. This process is called implicit differentiation and is demonstrated in the following problem.

Find the equation of a line tangent to $x^{3}+y^{3}=35$ at the point (2, 3). By implicit differentiation, you obtain
$m=\left.\frac{d y}{d x}\right|_{(2,3)}=\left.\frac{-x^{2}}{y^{2}}\right|_{(2,3)}=-\frac{4}{9}$.
Thus the equation of the tangent line is
$y-3=-\frac{4}{9}(x-2)$.

Is there a way to take the derivative implicitly with the Voyage ${ }^{\text {тм }} 200$ PLT? The answer is yes. This is because the differential of a function in x and y of the form $F(x, y)=$ constant is given by
$d F=\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0$,
which can be solved for $\frac{d y}{d x}=-\frac{\partial F / \partial x}{\partial F / \partial y}$.
Do not be concerned if this expression looks unfamiliar. It justifies the result that always occurs with implicit differentiation. It is essentially the same process employed in solving a related rate problem, where both x and y are considered to be functions of t; that is,
$\frac{d F}{d t}=\frac{d F}{d x} \cdot \frac{d x}{d t}+\frac{d F}{d y} \cdot \frac{d y}{d t}=0$.
Solve for $\frac{d y}{d x}=\frac{d y / d t}{d x / d t}$ to obtain the same result.

Functioning on Your Own (Continued)

1. Accordingly, to define a function called implicit, press F4 and select 1:Define. Now press
IMPLICIT \square EXPRESS \square INDVAR \square DEPVAR \square
\square EXP $[d]$ EXPRESS \square INDVAR $\square \square$ 2nd $[d]$
EXPRSS \square DEPVAR \square ENTER.

Use this function to find the implicit derivative of $x^{3}+y^{3}=35$ by pressing IMPLICIT (x x 3 円 \mathbf{Y} 3 $\mathbf{X} \mathbf{Y} \square$ ENTER.
implicit derivative $=$
2. Evaluate the derivative at $(2,3)$, and store it as m by retrieving it from the history area. Press
 (2nd \mathbf{K} or [1] is pronounced "with".)
$m=$
3. To solve the equation, press

equation $=$
4. Now use the function implicit to find $d y / d x$, and write the equation of the tangent line at the given point of the following curves:

curve and point	tangent line at point
$x^{2} y+x y^{2}=12$ at $(-4,1)$	
$x^{2}+y^{2}=25$ at $(3,4)$	
$x=\cos (y)$ at $(\sqrt{2} / 2, \pi / 4)$ (See Hint.)	

Implicit operates as a function because it requires arguments and returns a unique response-an expression. Functions on the Voyage ${ }^{\text {TM }} 200$ PLT may operate as parts of larger expressions.

Hint: Set one side equal to zero first.

Functioning on Your Own (Continued)

Part C—Defining a Total Differentiation Function

1. Our last example will do even more. It will take an expression as an input and return a new expression, the total differential, with created variables such as $d x$ and $d y$.

On the Home screen, press F4 and select 4:DelVar. Then delete $x, d x, y$, and $d y$ by pressing $\mathbf{X} \square \mathbf{D X} \square$ \mathbf{Y}, DY ENTER.
2. Now solve the following problem by hand.

Two ships sail from a harbor, one traveling east at 24 miles per hour, and the other traveling north at 18 miles per hour. How fast is the distance between them changing when the east-bound ship is 50 miles from the harbor and the north-bound ship is 120 miles from the harbor?

Let
$x=$ the distance the east-bound ship has traveled from the harbor at time t.
$y=$ the distance the north-bound ship has traveled at time t.
$s=$ the distance between the two ships at time t.
Then the relation among the distances is $s^{2}=x^{2}+y^{2}$. Because all three variables are functions of time, take the derivative of both sides of the equation with respect to t.

Your answer is the equation of related rates.

equation $=$

Substitute the values $x=50$ and $y=120$ in the original relation, and solve for s.

$$
S=
$$

Substitute these values plus $\frac{d x}{d t}=24$ and $\frac{d y}{d t}=18$ into the equation of related rates. Solve for $\frac{d s}{d t}$.

```
ds
```


Functioning on Your Own (Continued)

3. Now, solve the problem in step 2 using the Voyage ${ }^{\text {TM }} 200$ PLT.

To create a new function called relrates using the Program Editor, press APPS and select Program Editor. Then select 3:New.

Because you want a function and not a program, press (1) and select 2:Function. Then press $\odot \odot$ to move to Variable. Type RELRATES and press ENTER. You are now in the Program Editor.

Type the following function lines into the Voyage 200.

:relrates(relation, var1, var2)

Relrates takes three arguments: the relation being evaluated and two variables.

:Func

Func must be the first line of a function defined in the Program Editor.

:d(relation, var1)*expr("d"\&string(var1)) $+d$ (relation, var2)*expr("d"\&string(var2))

This expression will be returned as the value of the function relrates.

:EndFunc

EndFunc must be the last line of a function defined in the Program Editor.

When you finish entering the function lines, press [CALC HOME] to return to the Home screen.

Hints: Rather than typing relrates(, you could go to the VAR-LINK menu (2 nd [VAR-LINK]), move the cursor to select relrates, and press ENTER to paste it into the editor.

To enter \&, press 2nd \mathbf{H}.
To find the string (and expr(commands, press 2nd [MATH] and select C:String.

Functioning on Your Own (Continued)

3. (continued)

When you solved by hand in step 2 and found the equation relating the rates
$\frac{d x}{d t}$ and $\frac{d y}{d t}$, you should have obtained
$2 s \cdot \frac{d s}{d t}=2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}$.
With the Voyage ${ }^{\text {TM }} 200$ PLT, "/" cannot be used in a variable name. Therefore, in using relrates, instead of $d x / d t$, for example, only $d x$ is returned.

To define the variable s, press

To define the differential $d s$, press
DEFINE DS \square RELRATES $\square \mathbf{S} \square \mathbf{X} \square \mathbf{Y} \square$ ENTER.
Evaluate $d s$ for the particular values of the independent variables by pressing DS [2nd [1] X $\ddagger 50$ AND DX $\ddagger 24$ AND Y ${ }^{-1} 12$ AND DY $\because 18$ - ENTER.

$$
d s=\frac{d s}{d t}=
$$

Functioning on Your Own (Continued)

Extra Practice

Try using the function relrates with your Voyage ${ }^{\text {TM }} 200$ PLT to solve the following related rates problems.

1. An 18-foot ladder leans against the wall. Its base starts to slide away. When the base is 10 feet away, it is moving at 6 feet per second. How fast is the top of the ladder against the wall falling at that moment?
2. Sand pours onto a conical sand pile at the constant rate of $10 \mathrm{ft}^{3}$ per minute. If the height of the pile is always one-half the diameter of the base, how fast is the height changing when the pile is 6 feet high?
\qquad
\qquad
