Vector Graphics

Student Activity

$\begin{array}{llllll}7 & 8 & 9 & 10 & 11 & 12\end{array}$
(2)

Investigation

Student

Introduction

In 1637 René Descartes published a revolutionary book La Géométrie where he brought together two areas of mathematics; Geometry and Algebra. The "Cartesian" plane, named after René Descartes, is an integral component of every high school mathematics course. In this activity you will see how vectors can be incorporated into this two dimensional space. Using the same techniques, you can easily extend this approach into three dimensions.

Vectors can be expressed as a direction and magnitude (Polar) or as mutually perpendicular projections (Components), the latter form is explored in this activity. The directions are referred to as $i(x$ direction) and j (y direction), for three dimensions a k (z direction) is also included. For some relatively straight forward problems it is quicker and more appropriate to complete calculations 'by-hand', however, as the calculations are repeated and gradually increase in complexity, having a template becomes an extremely useful tool. This activity sets up a template that can be used for other investigations including problems in three dimensions.

Problem to be explored

Consider three points A, B and C on the function: $y=\frac{1}{x}$.
These three points can be joined to create a triangle: $\triangle A B C$.
This triangle has some interesting features that will be explored through the use of vectors.

To begin this investigation, point $\mathrm{A}=(-1,-1), \mathrm{B}=(1 / 2,2)$ and $\mathrm{C}=(4,1 / 4)$.

Vectors as Matrices

A vector in component form can be used to reference point A :

$$
O A=\underset{\sim}{a}=-\underset{\sim}{i}-\underset{\sim}{j}
$$

One way to represent a vector on the calculator is to use a matrix. This vector can be stored in Matrix A; however, for this investigation it will be stored directly into Y_{1}.

Press $y=$ to access the editor, followed by alpha and [f3] for the Matrix insertion shortcut.

Use this menu to insert a 1×2 matrix to represent the vector OA .
Use the above process to create vectors $O B$ and $O C$ in Y_{2} and Y_{3} respectively.

Vector $A B$ is equal to: $A O+O B$ or $-O A+O B$
Vectors $A B, B C$ and $C A$ will be stored in $Y_{4,} Y_{5}$ and Y_{6} respectively.
Within the $Y=$ editor, navigate to Y_{4} and press vars, arrow across to Y-VARS and select Function followed by Y_{1}, alternatively press alpha [f4] and select the corresponding function.

To calculate - OA + OB, enter the expression: $-Y_{1}+Y_{2}$
Y_{4} now contains vector $A B$.

Plot1 Plot2 Plot3	
- Y_{1} 1日[X $\left.1 / \mathrm{X}\right]$	
- $\mathrm{Y}_{4} \mathrm{E}$ - $\mathrm{Y}_{1}+\mathrm{Y}_{2}$	1:Y $\mathrm{Y}_{1} 6: \mathrm{Y}_{6}$
- $\mathrm{V}_{5}=$	2: $Y_{2} 7: Y_{7}$
- Y $_{6}=$	$3: Y_{3} 8: Y_{8}$
- VY $_{\text {¢ }}$	4:Y49:Y9
-19 $\mathrm{Y}_{8}=$	5:Y50:Y0
FRAC/FUNC/MTRX	[YVAR]

Question 1

On the calculator home screen use the vars key and function menu to recall Y_{4} and hence determine the matrix that represents vector $A B$. Explain your answer in terms of point A and B.

Question 2

Determine expressions for vectors BC and CA in terms of $\mathrm{OA}\left(\mathrm{Y}_{1}\right), \mathrm{OB}\left(\mathrm{Y}_{2}\right)$ and $\mathrm{OC}\left(\mathrm{Y}_{3}\right)$ as applicable.
Store these expressions in Y_{5} and Y_{6} respectively. Write down the matrix and equivalent vector expressions for $B C$ and $C A$.

Question 3

On the calculator home screen calculate: $Y_{4}+Y_{5}+Y_{6}$ and explain the result.

Question 4

Draw a diagram of the graph and all six vectors. (Label each vector as $Y_{1}, Y_{2} \ldots Y_{6}$)

Magnitude of a Vector

The magnitude of vector is calculated using Pythagoras＇s theorem，squaring each component，adding these squared values together and then calculating the square－root：

The magnitude of a vector can be computed by：

$$
|\underset{\sim}{a}|=\sqrt{x^{2}+y^{2}} \text { where } \underset{\sim}{a}=x \underset{\sim}{i}+\underset{\sim}{j}
$$

We can see how this works with matrices：

$$
\underset{\sim}{a}=\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

To multiply matrix A by itself requires the matrix to be transposed so the rows and columns align：

$$
(\underset{\sim}{a})^{T}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

MORMAL FLOAT AUTO REAL DEGREE MP —

$$
\underset{\sim}{a} \times \underset{\sim}{a}=\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[x^{2}+y^{2}\right]
$$

The determinant of this 1×1 matrix is simply $x^{2}+y^{2}$ which then allows the square－root of this value to be computed．

Note：The determinant and transpose commands are located in the matrix menu：2nd［Matrix］＞MATH

Mathematics

Tip！

In＂vector world＂，the magnitude of a vector can also be computed using the dot product：

$$
|\underset{\sim}{a}|=\sqrt{\underset{\sim}{a} \cdot \underset{\sim}{a}}
$$

Question 5

Determine the magnitude of vectors $A B, B C$ and $C A$ and hence the perimeter of triangle $A B C$ ．
Suppose point $\mathrm{A}(-1,-1)$ is moved to a new location on the curve $y=\frac{1}{x}$ ， the perimeter of the triangle would obviously change．
Use the $\mathrm{Y}=$ editor to set the coordinates of point A as：$\left(x, \frac{1}{x}\right)$
Using a variable in the matrix can only be achieved whilst the matrix is associated with a $Y=$ equation．This approach allows the matrix to be used in a＇solve＇command．

MORMAL FLOAT AUTO REAL DEGREE MP	［］
Plot1 Plot2 Plot3	
－ $\mathrm{Y}_{2} \mathrm{~B}[1 / 2$ 2］	
－NY3日［4 1／4］	
－\Y $\mathrm{Y}_{4} \mathrm{E}-\mathrm{Y}_{1}+\mathrm{Y}_{2}$	
－ NY_{5} 日－ $\mathrm{Y}_{2}+\mathrm{Y}_{3}$	
－ V_{6} 日 $\mathrm{E}^{\text {－}} \mathrm{Y}_{3}+\mathrm{Y}_{1}$	
－NY？＝	
－\Y8 $=$	
－\Yg＝	

Suppose point A is moved such that the perimeter is now equal to 17. This means that the sum of the side lengths, vector magnitudes, will be equal to 17.

$$
|A B|+|B C|+|C A|=17
$$

The numerical equation solver can be accessed by pressing:
math > Option C (Numeric solver)
Enter expressions for the magnitude of each vector for E1 (Equation 1) and the perimeter for E2 (Equation 2) as shown.

In this menu the GRAPH key becomes a 'soft' key for the "OK" option. Select "OK", edit the approximate starting value for X to direct the calculator where a solution may be located.

Select "SOLVE" ... the calculator will search for an answer, as indicated by the 'spinning wheel' adjacent to the Battery symbol.

This process may be hastened by reducing the default boundary conditions: $\left\{-1 \times 10^{99}, 1 \times 10^{99}\right\}$

MORMAL FLOAT AUTO REAL DEGREE MP П SELECT VARIABLE; PRESS SOLVE

```
|det(\mp@subsup{Y}{4}{**Y4T)}}+\sqrt{}{\operatorname{det}(\mp@subsup{Y}{5}{*}\mp@subsup{Y}{5}{T}\mp@subsup{)}{}{T})
```

 \(X=-2 \square\)
 bound=\{-1E99,1E99\}

Calculator

Tip!

For large and repetitive calculations it can be more efficient to store an expression as a 'string'. Place quotation marks around the expression and use s sto \rightarrow and vars > String to store.

The mathematical expression can then be 'recalled' by using the 'recall' operation (RCL) located above sto \rightarrow and selecting the corresponding String variable from the vars menu.

Question 6

What location(s) are possible for point A to generate a perimeter of $17 ?$

Dot Product of a Vector

The dot product of two vectors is computed as follows:

$$
\underset{\sim}{a} \cdot \underset{\sim}{b}=x_{a} x_{b}+y_{a} y_{b}+z_{a} z_{b} \text { where: } \underset{\sim}{a}=x_{a} \underset{\sim}{i}+y_{a} \underset{\sim}{j}+z_{a} \underset{\sim}{k} \text { and } \underset{\sim}{b}=x_{b} \underset{\sim}{i}+y_{b} \underset{\sim}{j}+z_{b} \underset{\sim}{k}
$$

$\underset{\sim}{a} \cdot \underset{\sim}{b}=|\underset{\sim}{a}||\underset{\sim}{b}| \cos (\theta)$ where θ is the angle between the two vectors.

The dot product of two vectors can be used to compute the angle between the vectors, in this section however we will use the fact that if the dot product is equal to zero then the vectors are at right angles. ($\left.\cos \left(90^{\circ}\right)=0\right)$

It is easy to calculate the dot product of the vectors stored in $\mathrm{Y}_{4}, \mathrm{Y}_{5}$ and Y_{6}, the vectors that define the sides of the triangle.

$$
\operatorname{det}\left(Y_{4} * Y_{5}^{\top}\right)
$$

MORMAL FLOAT GUTO REfL DEGREE MP
[
$\operatorname{det}\left(Y_{4} * Y_{5} T\right)$

Question 7

Change the location of point A to: $(-1,-1)$ then calculate the dot product of vectors $A B$ and $B C\left(Y_{4}\right.$ and $\left.Y_{5}\right)$. What does the result say about the angle between these two sides?

Question 8

Using your answer to question 6 to help determine the area of the triangle $A B C$ where A is located at ($-1,-1$).
Suppose the vertices of the triangle are now:

$$
\begin{aligned}
& \mathrm{A}=(-1,-1) \\
& \mathrm{B}=\left(\frac{1}{3}, 3\right) \\
& \mathrm{C}=\left(c, \frac{1}{c}\right)
\end{aligned}
$$

Point C is to be moved such that a right angled triangle is to be formed once again.

Edit Y_{3} to include ' c '. Note that $c \neq 0$.
The calculator's numeric solver can now be used to locate point C.
We are looking for vectors $B C$ and $C A$ to be perpendicular, therefore

$$
B C \cdot C A=0 \text { or } \operatorname{det}\left(Y_{5} * Y_{6}^{\top}\right)=0
$$

This can be entered into the numeric solver: Math > Numeric Solver E1 represents Expression 1, similarly E2 represents Expression 2.

Question 9

What is the value of C for which ABC is once again a right angled triangle?
Note: This can be expressed as an exact value.

Question 10

Verify that the value of C forms a right angled triangle.

Calculator Tip!

After using the Numeric Solver command, the computed value is automatically stored in the corresponding variable. This means that the vectors $\mathrm{BC}\left(\mathrm{Y}_{5}\right)$ and $\mathrm{CA}\left(Y_{6}\right)$ will now be equal to the vectors that form a right angled triangle.

Vector multiplied by a Scalar

When a vector is multiplied by a scalar, the direction ${ }^{1}$ of the vector remains the same but the length will change if the scalar quantity is not equal to 1 . A simple way to explore this is through a geometric example.

Consider the triangles shown here. When trying to
 calculate the height of $\triangle A B C$ we can extend the base to point P such that $\angle \mathrm{APC}=90^{\circ}$.

Vector AB can be multiplied by a scalar n such that vector $\mathrm{AP}=n \mathrm{AB}$.

Vector AP has the same direction as $A B$ but has a different length. Note: $P C$ is the altitude of $\Delta A B C$.

For this section of the investigation points A, B and C are defined as:

$$
A=(-1,-1) \quad B=\left(\frac{1}{3}, 3\right) \quad C=(1,1)
$$

Notice that BC has been extended such that $\mathrm{BP}=\mathrm{nBC}$.
P is located such that $P A$ is perpendicular to $B P$.
This means that AP $\cdot \mathrm{BP}=0$
Note: AP is the altitude of $\triangle A B C$.

Question 11

Write a vector equation for AP in terms of BC and AB .

Question 12

Determine the value of n such that AP•BP $=0$
Note: The numerical solver on the calculator can be used to determine the value of n.

Question 13

Determine the vector OP and hence the coordinates of point P .

[^0]
$A=(-1,-1)$
$B=\left(\frac{1}{3}, 3\right)$
$C=(1,1)$
Point Q is such that $A Q$ is perpendicular to $C Q$.
Note: $C Q$ is another altitude of $\triangle A B C$.

Question 14

Write a vector equation for $C Q$ in terms of $C A$ and $A B$.

Question 15

Determine the value of m such that $A Q \cdot C Q=0$ and hence the vector $O Q$.

$A=(-1,-1)$
$B=\left(\frac{1}{3}, 3\right)$
$C=(1,1)$

Point R is such that $A R$ is perpendicular to $B R$.
Note: $B R$ is the third altitude of $\triangle A B C$.

Question 16

Write a vector equation for BR in terms of AB and CA .

Question 17

Determine the value of s such that $s A C \cdot R B=0$ and hence the vector $O R$.

Question 18

Consider the values of m, n, and s established in the previous questions and their respective locations. By considering the values only, how is it possible to tell if the altitude (perpendicular) sits on the vector?

Extension: Points of Intersection Investigation

It is possible to determine where each of the altitudes intersects one another. The diagram below shows the point of intersection between altitudes $B R$ and $A P$ at point S.

Important knowledge:

- $\quad B S$ is a scalar multiple of $B R$.
- AS is a scalar multiple of AP.
- $\mathrm{OS}=\mathrm{OB}+\mathrm{BS}$ and $\mathrm{OS}=\mathrm{OA}+\mathrm{AS}$.

The above information can be used to determine the location of OS. Determine the location of S and explore the location of the point(s) of intersection for the altitude passing through C with those passing through A and B.

Vary the locations of points A, B and C and summarise the location of point S and the general vector defining $O S$.

[^0]: ${ }^{1}$ Direction - The direction will reverse if the scalar is a negative quantity.

