Teacher Notes

- G.G.47 Investigate, justify, and apply theorems about mean proportionality:
 - ➤ the altitude to the hypotenuse of a right triangle is the mean proportional between the two segments along the hypotenuse

Lesson Launcher Objectives:

- 1) Location of the hypotenuse of a right triangle.
- 2) Identifying an altitude upon the hypotenuse.
- 3) Naming the segments of the hypotenuse
- 4) Rewriting the equality of two products as a proportion.
- 5) Learning the definition of a mean proportional
- 6) Discovering that the altitude upon the hypotenuse is the mean proportional between the segments of the hypotenuse.

Procedure:

- 1) As you selected, grabbed and moved points A and C
 - A) What changed? The measures of segments CD, BD and DA. The values of CD*CD, BD*DA
 - B) What remained the same? The measures of the two right angles. CD*CD and BD*DA were aways the same
- 2) What kind of triangle is $\triangle ABC$? right
- 3) Name the hypotenuse of $\triangle ABC$. BA

- 4) \overline{CD} must be a(an) C) altitude
 - A) median
 - B) angle bisector
 - C) altitude
 - D) perpendicular bisector
- 5) Name the segments of the hypotenuse. BD, DA
- 6) Which of the following statements seems to be true? B) CD*CD = BD*DA
 - A) CD*CD > BD*DA
 - B) CD*CD = BD*DA
 - C) CD*CD < BD*DA
- 7) The answer to question 5 allows us to rewrite the expression as a proportion. Fill in the missing extremes: $\frac{?}{CD} = \frac{CD}{?}$ BD, DA
- 8) The answer to question 5 allows us to rewrite the expression as a proportion. Fill in the missing means: $\frac{BD}{?} = \frac{?}{DA}$ CD, CD
- 9) When the means of a proportion are the same that value is called the **mean proportional**. Example: $\frac{a}{x} = \frac{x}{b}$ In this proportion x is the **mean proportional** between a and b. Using this example as a guide and your answers to questions 6 and 7 fill in the blanks of the following statement:
 - CD is the mean proportional between BD and DA
- 10) Using your answers to questions 3 and 4 generalize the answer to question 8.

If the altitude is drawn upon the hypotenuse of a right triangle then the altitude is the mean proportional between the segments of the hypotenuse.