Teacher Notes

G.G. 47 Investigate, justify, and apply theorems about mean proportionality:
$>$ the altitude to the hypotenuse of a right triangle is the mean proportional between the two segments along the hypotenuse

Lesson Launcher Objectives:

1) Location of the hypotenuse of a right triangle.
2) Identifying an altitude upon the hypotenuse.
3) Naming the segments of the hypotenuse
4) Rewriting the equality of two products as a proportion.
5) Learning the definition of a mean proportional
6) Discovering that the altitude upon the hypotenuse is the mean proportional between the segments of the hypotenuse.

Procedure:

| The student opens Cabri Jr. and the |
| :--- | :--- |
| APPVAR ALTHYP1M |\quad| As the student explores the figure by |
| :--- |
| moving vertices A and C. |

1) As you selected, grabbed and moved points A and C
A) What changed? The measures of segments CD, BD and DA. The values of CD*CD,$~ B D * D A$
B) What remained the same? The measures of the two right angles. CD*CD and BD*DA were aways the same
2) What kind of triangle is $\triangle \mathrm{ABC}$? right
3) Name the hypotenuse of $\triangle \mathrm{ABC}$. BA
4) $\overline{C D}$ must be a(an) C) altitude
A) median
B) angle bisector
C) altitude
D) perpendicular bisector
5) Name the segments of the hypotenuse. BD, DA
6) Which of the following statements seems to be true? B) $\mathrm{CD} * \mathrm{CD}=\mathrm{BD} * \mathrm{DA}$
A) $\mathrm{CD} * \mathrm{CD}>\mathrm{BD} * \mathrm{DA}$
B) $\mathrm{CD} * \mathrm{CD}=\mathrm{BD} * \mathrm{DA}$
C) $\mathrm{CD} * \mathrm{CD}<\mathrm{BD}^{*} \mathrm{DA}$
7) The answer to question 5 allows us to rewrite the expression as a proportion. Fill in the missing extremes: $\frac{?}{C D}=\frac{C D}{?} \quad \mathrm{BD}, \mathrm{DA}$
8) The answer to question 5 allows us to rewrite the expression as a proportion. Fill in the missing means: $\frac{B D}{?}=\frac{?}{D A} \quad \mathrm{CD}, \mathrm{CD}$
9) When the means of a proportion are the same that value is called the mean proportional. Example: $\frac{a}{x}=\frac{x}{b} \quad$ In this proportion x is the mean proportional between a and b. Using this example as a guide and your answers to questions 6 and 7 fill in the blanks of the following statement:

CD is the mean proportional between BD and DA
10) Using your answers to questions 3 and 4 generalize the answer to question 8.

If the altitude is drawn upon the hypotenuse of a right triangle then the altitude is the mean proportional between the segments of the hypotenuse.

