Number of Regions Solution Screen Captures and Solutions to Student Worksheet

1.4

B in	es B	regions	8	- 1
	0	1		
Г	1	2		
	2	4		
	3	7		
	4	11		

1.5 possible solution

Is this relationship linear? Explain why or why not.

This is not linear. As the number of lines goes up by 1, the maximum number of regions does not increase by a constant amount. The differences on the maximum number of regions are 1, 2, 3, 4. Therefore there is no constant slope/rate of change.

1.7

1.9

1.10 multiple possible solutions – See page 1.9

Hand fit quadratic function

$$fI(x) = 0.54(x+0.38)^2 + 1$$

1.11 – See page 1.12 for work

Record the quadratic you got from this regression.

$$f2(x) = 0.5x^2 + 0.5x + 1$$

1.12

B in	es B	regions	8	
•				=QuadReg
1	0	1	Title	Quadrati
2	1	2	RegEqn	a*x*2+b*
3	2	4	а	0.5
4	3	7	ь	0.5
5	4	11	c	1.

New 1.14

1.14 multiple solutions – See page 1.9 & 1.10.

Expanded form of $f 1(x) = 0.54x^2 + 0.4104x + 1.07798$

$$f2(x) = 0.5x^2 + 0.5x + 1$$

Describe how well your f 1(x) compares to the f 2(x).

Various responses – for the f1 above, the match is pretty good.

New 1.15

New 1.16

System of three equations and three unknowns:

$$A(1^2) + B(1) + C = 2$$

 $A(2^2) + B(2) + C = 4$

$$4A + B + C = 4$$

$$A(3^2) + B(3) + C = 7$$

$$9A + B + C = 7$$

A+B+C=2

New 1.17

Record the matrix you entered.

$$rref\left(\begin{bmatrix} 1 & 1 & 1 & 2 \\ 4 & 2 & 1 & 4 \\ 9 & 3 & 1 & 7 \end{bmatrix}\right)$$

Record the reduced row echelon form of your matrix.

$$\begin{bmatrix} 1 & 0 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Record the coefficient solutions to your system below.

$$A = 1/2$$

$$B = 1/2$$

$$C = 1$$

Record the quadratic $Ax^2 + Bx + C = y$ obtained by substituting these values in:

$$\frac{1}{2}x^2 + \frac{1}{2}x + 1 = y$$

How does this quadratic compare to the hand fit quadratic f 1(x) and the regression quadratic f 2(x) that you found earlier?

It's the same.