

EE*Pro, by da Vinci Technologies Group, Inc., is an all-inclusive App for electrical engineering students, which helps them study concepts for EE coursework. The App is organized into analysis, equations and references.

F1 F2 F3 F4 F5 To Analysis
1:AC Circuits… 2:Polyphase Circuits… 3:Ladder Network
4.Filter Design… 5.Gain and Frequency… 6.Fourier Transforms… 7.Tuo-Port Networks…
84Transformer Calcs
TYPE OR USE ++++ CENTERJ OR CESCJ

Calculate Transfer Function

To start the EE* Pro App, press [APPS]. Select 1: FlashApps and then "EE*Pro".

2

1

Press [F2]: Analysis and select 5: Gain and Frequency.

3

4

5

6

7

Select 1: Transfer Function and choose Roots for Inputs

Enter: Poles (R1)...Rn) n>m

Enter 100000 for Constant, {-10} for Zeros, and {-100, -1000, -5000} for Poles

F1 F2 Tools+ Solve	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	F4 View	F5 Opts+	F6 Edit		
Transfer Function Inputs: Roots?						
Constant: 1000000. Zeros List: (-10.) Poles List: Beimut, Simut						
H(s)_: 10 PFE_: -25	000 <u>00</u> 5.459	*(s_: 2/(s.	+10.) _+500	00)		
Entor: Polor /P	1. 8031					

Press [F2] to calculate H(s)_ and PFE_.

RAD AUTO

MAI

To view H(s)_ in Pretty Print format, highlight H(s)_ and press [F4]. Press [ESC].

Press [ESC] to return to the Gain and Frequency screen and select Bode Diagram.

F1 SC Tools+ Shise	F3 Graph	F4 Selit	F5 Opts+	F6 Edit			
Bode Diagram							
Xfer: IS							
Indep:_s.	_						
Graph Type: Gain→							
0-Max: 100000.							
A-Min: -2	ຊີ້.ດດ	19					
A-Max: 40	5			4			
Enter: Transfer	. functio						
Enver - It share	Tensore						

3 F4 F5 Bode Dia9ram Gaint 30000.

0015

-34

+Lo

-10

Graph the Gain Plot for the **Transfer Function**

1 In the Bode Diagram screen, the Xfer field contains the Transfer Function H(s)_ calculated in the previous example. Choose s_ for Indep.

2 Choose Gain.

3

Enter 0.1 for ω -Min as the start of the radian frequency plot. Enter 100000 for ω -Max as the endpoint of the radian frequency plot.

4

Put a check mark in the Autoscale and Label Graph fields.

5

+ F3 F4 F5+ F6+ F7+53 mTraceRe9raphMathDrawPenl 8199 (dB) (w r/s)+ .011

Put a check mark on Full Screen graphing mode. If this field is not checked, the graph will default to the right half of the screen. Press [F3] to graph the transfer function.

6

Press [2nd] followed by [Apps] to toggle between the input screen and the graph window when split-mode is active.