\qquad
\qquad

Domain - set of valid x-values (or inputs) for which there are corresponding y-values
Range - set of corresponding y-values (or outputs)

Problem 1 - Sunflower Growth

A sunflower plant is measured every day (t), for $t \geq 0$. The height of the plant in centimeters may be modeled by the following logistic function:

$$
h(t)=\frac{260}{1+24(0.9)^{t}}
$$

Graph the height of the sunflower over 100 days. Replace t
 with x and set an appropriate window.

- Determine the domain and range.
- What do the values for the domain and range tell you about the growth of the sunflower plant in this study?

Problem 2 - Wind Turbine Power

The equation, $P=k w^{3}$, relates the speed of the wind (w), in miles per hour to the power (P) produced by a wind turbine in watts. For a particular wind turbine, $k=0.885$.

Graph the function that models power output for this turbine. Set an appropriate window.

- Why is it necessary to restrict the domain and range for this function?
- Identify the domain and range for the function modeling power output by a wind turbine.

Problem 3 - Bald Eagle Population

For a species protected from its natural enemies, the relationship between "Number of young produced" $(f(t))$ and "time since 1990 " (t) can in general be modeled as an exponential function of this form: $f(t)=A \cdot 10^{k t}$.

Graph the function that models the given bald eagle population, $f(t)=5.9 \cdot 10^{0.1141 t}$.
Given that the exponential growth function models bald eagle data since 1990, when $t=0$, determine the domain and range for this function.

Additional Problems

For each problem, graph the function given and then indentify the domain and range.

1. $f(x)=(x-2)^{2}-3$
domain:
range:
2. $f(x)=\frac{1}{\sqrt{x-5}}$
domain:
range:
3. $f(x)=\sin (x)$ domain: range:
4. $f(x)=\log _{10} x$
domain:
range:
5. The relationship between the intensity of a light (I), and the distance from the source of the light (d), is given by the equation, $I=\frac{k}{d^{2}}$, where k is a constant. For a given light bulb, $k=0.7242$. Graph the light intensity function and determine the domain and range.
domain:
range:
6. Why does the value $d=0$ not work for the intensity function?
7. How does the graph illustrate that $d=0$ is not valid for the intensity function?
