Assessment Task
 TI-30XB MultiView ${ }^{\text {mim }}$: Factors in their Prime

Name:

1. What is the smallest number that has three different prime factors?
2. What is the smallest number that has the factors:
a) 2,3,5 and 7
b) 2, 3, 5, 6 and 7
3. Comment on your answers to parts (a) and (b) in the previous question:
\qquad
\qquad
\qquad
4. What is the smallest number that has the factors:
a) 2, 4, 6 and 7
b) 2, 4, 7 and 12
c) Comment on your answers to parts (a) and (b).

Include a discussion about how you obtained your answers:
5. What is the smallest number that contains all the numbers from 1 to 20 as its factors?
\qquad
\qquad
\qquad
\qquad

Assessment Task
 TI-30XB MultiView ${ }^{\text {mm: }}$: Factors in their Prime

6. The following numbers are relatively large. A systematic approach should be used to identify the prime factors. Mathematical shorthand is also appropriate for the prime factor expression.

Write down the prime factorisation of each of the following:
a) 512
b) 497664 \qquad
c) 6561 \qquad
d) 119744 \qquad
e) 31104 \qquad
f) 15625000 \qquad
7. Explain any strategies you used in question 6 to determine the prime factorisation of each number:
\qquad
\qquad
\qquad
8. Write down the prime factorisation of your home phone number.

Does anyone in your class have a prime phone number?
\qquad
\qquad
\qquad
9. Write down the prime factorisation of this year:
\qquad
10. When is the next prime year?

Student Worksheet 2
 TI-30XB MultiView ${ }^{\text {T: }}$: Factor Tree

Name:

A factor tree is a visual way to represent the factors of a number. The last row of factors have something in common, they are all prime numbers. Factor trees are helpful in finding the 'prime factors' of a number.

A factor tree for the number 24 is shown below:

Observations:

1. The first line: 8×3 is not the only possibility.
2. The product of each line is 24 :
$8 \times 3=24$
$4 \times 2 \times 3=24$
$2 \times 2 \times 2 \times 3=24$
3. The last line consists of prime numbers. ${ }^{1}$
4. Fill in the missing numbers for these factor trees:

Student Worksheet 2
 TI-30XB MultiView ${ }^{\text {™ }}$: Factor Tree

2. Write down any observations you can make about the bottom row of factors for each of the factor trees for the number 24?
\qquad
\qquad
\qquad
3. Complete the factorisation trees for each of the following:

Check that the product of the factors in each line equals the original number.

Student Worksheet 2
 TI-30XB MultiView ${ }^{\text {™ }}$: Factior Tree

4. Complete the factorisation trees for each of the following:
a) 21
b) 45
c) 60
d) 49
e) 64
f) 81
\qquad
\qquad
\qquad
\qquad
\qquad
5. Write down the original number for each of the following prime factor expressions:
a) $2 \times 2 \times 2 \times 3$
b) $3 \times 3 \times 5 \times 7$
c) $2 \times 2 \times 3 \times 5$
d) $2 \times 3 \times 3 \times 11$
e) $5 \times 7 \times 11$
f) 13×17
6. Write down all the prime numbers between 1 and 60 :
\qquad
\qquad

Student Worksheet 2
 TI-30XB MultiView ${ }^{\text {™ }}$: Factor Tree

7. Write down the prime factorisation of each of the following:
a) 42
b) 225
c) 180
d) 490
e) 640
f) 243
8. Compare your answers from question 4 to those in question 7:
9. Use your answers to question 7 to help write down the prime factorisation of each of the following:
a) 294
b) 4725
c) 2520
d) 16170
e) 14080
f) 18711
\qquad
\qquad
\qquad
\qquad
\qquad
