Equations of a Circle

1. How does the equation of a circle change when you move point B ? What specific variable is changing?
2. How does the equation of a circle change when you move point A ? What specific variable(s) are changing?
3. How does the equation of a circle change when you move both points A and B ? Again, what specific variables are changing?
4. Is there a difference in the equation if the center is on the origin as opposed to anywhere else on the coordinate plane? Give an example of an equation of a circle when the center is on the origin and one example of an equation of a circle when the center is not on the origin.

Practice Problems Part 1

1. $\mathrm{x}^{2}+\mathrm{y}^{2}=49$

C: \qquad $r=$ \qquad
2. $(x-4)^{2}+(y-2)^{2}=121 \mathrm{C}$: \qquad $r=$ \qquad
3. $(x-5)^{2}+y^{2}=64$

C: \qquad $\mathrm{r}=$
4. $x^{2}+(y+2)^{2}=12$

C: \qquad $r=$ \qquad

Before continuing, use the diagram on page 1.3 (on the handheld TI Nspire) to check your answers for accuracy.
5. Write the equation of a circle with the center $(3,4)$ and a radius of length 3 .
6. Write the equation of a circle with the center $(-4,5)$ and a radius of length 4.
7. Write the equation of a circle with the center $(7,0)$ and a radius of length $3 / 4$.
8. Write the equation of a circle with the center $(-3,-6)$ and a radius of length $\sqrt{ } 5$.

Use the diagram on page 1.3 (on the handheld TI Nspire) to check your answers for accuracy.
9. Can you and your partner come up the equation of a circle whose center is at the origin and the equation of a circle whose center is (h, k) ?

