8. At $1 \mathrm{~min}, x(60) \approx 81752 \mathrm{ft}(\approx 15.5 \mathrm{mi}!)$.

This does not seem reasonable; the data show the bullet to be slowing down more than the regression equation suggests.
9. Answers will vary.

Exploration 3-6a

1. Yes
2.

3. Conjectures will vary.
4. $g^{\prime}(x)=3 \cos 3 x$
5.

6. $h^{\prime}(x)=2 x \cos x^{2}$
7. Take the derivative of $\sin x^{2}$ and get $\cos x^{2}$. Then multiply by $2 x$, the derivative of x^{2}.
8.

$t^{\prime}(x)=0.7 \cos x^{0.7}$
9. Answers will vary.

Exploration 3-7a

1.

2. $\frac{d x}{d t}(0.8) \approx \frac{7.7-6.9 \mathrm{in} .}{1.0-0.6 \mathrm{~s}}=2 \mathrm{in} . / \mathrm{s}$
3. $\frac{d F}{d x}(7.3) \approx \frac{14.4-11.2 \mathrm{oz}}{7.7-6.9 \mathrm{in} .}=4 \mathrm{oz} / \mathrm{in}$.
4. See the graph in Problem 1, showing that lines through the respective points with the slopes as found in Problems 2 and 3 are tangent to the graphs.
5.

6. $\frac{d F}{d t}=\frac{d F}{d x} \cdot \frac{d x}{d t}=4 \mathrm{oz} / \mathrm{in} . \cdot 2 \mathrm{in} . / \mathrm{s}=8 \mathrm{oz} / \mathrm{s}$
7. $\frac{d F}{d t}(0.8)=\frac{14.4-11.2 \mathrm{oz}}{1.0-0.6 \mathrm{~s}}=8 \mathrm{oz} / \mathrm{s}-$ same answer as in Problem 6!
8. See the graph in Problem 5. The line with slope 8 is tangent to the graph. (Observe the different scales for the two axes.)
9. Answers will vary.

