Distribution of Sample Proportions

Teachers Teaching with Technology*
Professional Development from Texas Instruments

Probability and statistics
Student Activity

Introduction

From previous activity: This activity assumes knowledge of the material covered in the activity Introducing sample proportions, which introduced statistical inference. This involves using a sample statistic, in this case the proportion of a sample with a particular attribute to estimate the corresponding population parameter: the true population proportion. In that activity, it was assumed the count X of 'successes' in a sample is a binomial random variable, $X \sim \operatorname{Bi}(n, p)$, where n is the sample size and p is the proportion of 'successes' in the population. The sample proportion is also a random variable, $\hat{P}=\frac{X}{n}$. It was shown that the mean of $\hat{P}, \mathrm{E}(\hat{P})=p$, and the standard deviation of $\hat{P}, \mathrm{SD}(\hat{P})=\sqrt{\frac{p(1-p)}{n}}$. Overview of this activity: In this activity you will investigate further the distribution of the sample proportion, \hat{P}; in particular, the effect of changing the sample size and the population proportion. A model for the distribution of sample proportions is also explored.

Why simulate repeated random sampling?

In statistical inference we see how trustworthy a procedure is by asking what would happen if we repeated it many times. This leads to the idea of the sampling distribution of the statistic.
The sampling distribution of the sample proportion is the probability distribution of values taken by this statistic in all possible samples of the same size from the same population.

In practice, when conducting opinion polls and the like, it isn't feasible to repeat the sampling many times. However, the use of simulated random sampling, using TI-Nspire, allows us to imagine the results of all the possible random samples that the pollster didn't take - as illustrated in the following exercise.

Mobile Internet Subscriber Simulation

Open the TI-Nspire document 'Dist_proportions'. Navigate to Page 1.2 and follow the instructions to 'seed' the random number generator.
Australian Bureau of Statistics (ABS) data shows that in 2015, 50\% of Australian internet service subscribers had a mobile wireless connection ${ }^{1}$. The population proportion of 'mobile' subscribers in this population is therefore known to be: $p=0.5$.

[^0]Navigate to Page 1.4. Assume that the single result shown represents the sample proportion \hat{p} of 'mobile' subscribers from a surveyed random sample of 10 internet subscribers ($n=10$), drawn from the large population for which: $p=0.5$.

We can imitate carrying out the survey many more times using random number simulation. Each slider increment will draw a new random sample, and the sample proportion for the sample will be added to the spreadsheet and to the graph. Add 99 samples, so that the slider value is 100 . To reset the simulation, set the slider value to 1 . Then click on the spreadsheet cell ' $A=$ '. and press enter.

Question 1

a. What are the lowest and highest observed values of \hat{p} ?
b. What is the modal value of sample proportions?
c. What is the mean of the sample proportions (shown by the vertical line) for the 100 samples?
d. How close is the mean of the sample proportions to the population proportion?

Reset the simulation and navigate to Page 1.5. Use the slider to repeat the simulation of 100 samples. A histogram of the distribution of sample proportions will emerge. Navigate to Page 1.6, where the summary statistics for the histogram are calculated.

Question 2

Use the histogram, dot plot (Page 1.4) and summary statistics to describe, as fully as possible, the distribution of sample proportions of $n=10$ and $p=0.5$.

Changing the sample size

Suppose that for the mobile internet subscriber survey, we change the size of the sample that is drawn from the population with $p=0.5$.

Question 3

Predict how the shape of the distribution of the sample proportion will change, as the samples size increases.

Navigate to Page 2.2. When you select a value of n with the slider, 200 random samples of that sample size are drawn. The spinner allows you to redraw a new set of 200 samples of that size.
Using the slider, progressively change the sample size from $n=10$ to $n=250$.
Navigate to Page 2.3. Repeat the above on this page.

Question 4

a. As the sample size increases, what aspects of the distribution of sample proportions remain the same?
b. As the sample size increases, describe how the distribution changes.
c. How did your prediction in Question 3 compare with what you actually observed?

Navigate to Page 2.4, where the theoretical standard deviation of \hat{P}, and observed summary statistics for the 200 samples are displayed.

Question 5

a. For sample sizes of $n=10,50,100$ and 200 , record the theoretical and observed standard deviation for the distribution of sample proportions, correct to 4 decimal places.

	Theoretical SD	Observed SD
$n=10$		
$n=50$		
$n=100$		
$n=200$		

b. What aspect of the distribution is measured by the standard deviation?
c. What trend do you observe in the value of the standard deviation as the sample size increases?
d. How does the formula for the standard deviation of \hat{P} explain this trend?
e. In terms of using a sample proportion to estimate the true population proportion, explain why a small standard deviation for the distribution of \hat{P} is desirable.

Changing the population proportion

In this section, you will explore the sampling distribution for samples of a fixed size, drawn from populations with different population proportions, within the interval $0.05 \leq p \leq 0.95$.

Question 6

Suppose that you draw repeated random samples of size 10 , from different populations for which the population proportions are $p=0.5,0.6,0.7,0.8,0.9$.
a. Predict how the shape and features of the distribution of sample proportions will change, as the value of p increases.

Suppose that you draw repeated random samples of size 10, from different populations for which the population proportions are $p=0.5,0.4,0.3,0.2,0.1$.
b. Predict how the shape and features of the distribution of sample proportions will change, as the value of p decreases.

Navigate to Page 3.2. Set the sample size to $n=10$ and use the other slider to systematically increase the population proportion from $p=0.05$ to $p=0.95$. Navigate to Page 3.3 and observe the same data in a histogram.

Question 7

a. For what value(s) of p is the distribution least symmetrical?
b. For what value(s) of p is the distribution most symmetrical?

c. Apart from symmetry, what other aspects of the distribution change as the value of p changes?

Set the sample size to $n=20$ and systematically increase the population proportion from $p=0.05$ to $p=0.95$. Repeat for $n=50$ and $n=100$. As you systematically change values, navigate to Page 3.4, where the theoretical standard deviation of \hat{P} is calculated.

Question 8

a. Use the results from Page 3.4 to complete the table below, correct to 4 decimal places.

	$p=0.05$	$p=0.25$	$p=0.5$	$p=0.75$	$p=0.95$
$n=10$					
$n=100$					

b. What trends do you notice in the table of values? How do these trends accord with the observed changes to the shape of the distribution of \hat{P} ?

Focus on the population proportions $p=0.1$ and $p=0.9$

You will now examine more closely the distribution of \hat{P} for $p=0.1$.
Navigate to Page 3.2. Set the population proportion to $p=0.1$ and use the other slider to systematically increase the sample size from $n=10$ to $n=100$. Navigate to Page 3.3 and observe the same data in a histogram. Repeat for $p=0.9$

Question 9

a. For what value(s) of sample size n is the distribution least symmetrical?
b. For what value(s) of n is the distribution most symmetrical?

Theoretical distribution of \hat{P} from $\mathrm{Bi}(n, p)$

Navigate to Page 4.3. Recall that $\hat{P}=\frac{X}{n}$, where $X \sim \operatorname{Bi}(n, p)$. In the spreadsheet, the probabilities of $0,1, \ldots n$ successes are calculated for the theoretical distribution of $\operatorname{Bi}(n, p)$. Navigate to Page 4.2. The sliders allow the values of the parameters for $\operatorname{Bi}(n, p)$ to be varied, and the resultant proportion of successes is plotted against their
 probabilities.
On Page 4.2, set the value of the population proportion to $p=0.1$. Systematically increase the sample size from $n=10$ to $n=100$.

Question 10

What changes do you observe in the plot as the sample size increases?
Repeat the previous procedure for population proportion of $p=0.2$ to $p=0.9$.
Question 11
What are some similarities and differences, for corresponding values of n and p, between the plot on Page 4.2, and the graph on Page 3.2?

Modelling how sample proportions vary from sample to sample

On Pages 3.2 you observed that as the sample size increases, there are more possible values of the sample proportion. Consequently, for large sample sizes, the dot plot starts to resemble a continuous distribution. You also observed that for larger values of n, the distribution of \hat{P} was fairly symmetrical; not just for population proportions close to 0.5 , but also for, say, $p=0.1$.

In this section, you will explore the viability of modelling the discrete sampling distribution of \hat{P} with a continuous normal distribution, $\mathrm{N}\left(\mu_{\hat{P}}, \sigma_{\hat{P}}^{2}\right)$, where $\mu_{\hat{P}}=\mathrm{E}(\hat{P})=p$ and $\sigma_{\hat{P}}=\sqrt{\frac{p(1-p)}{n}}$.

Navigate to Page 5.2. A normal pdf (probability density function) curve is superimposed on the histogram of the distribution of \hat{P}. Use the sliders to adjust the sample size, n, and population proportion, p.

Question 12

Based on a visual comparison of the histogram and the corresponding normal pdf curve, for what values of n and p does the normal distribution appear to be a good fit?
Navigate to Page 5.3, which shows a normal probability plot. You can adjust the values of n and p.

Question 13

What do you think this normal probability plot is showing?
Navigate to Page 5.4, which combines Pages 5.2 and 5.3 into a single split page. In the left-hand panel, the normal probability plot is displayed, with the expected z on the vertical axis, where z is the standard normal random variable.

Question 14

a. What is the significance of the regression line shown in the normal probability plot?
b. How does the normal probability plot tell you whether $\mathrm{N}\left(\mu_{\hat{P}}, \sigma_{\hat{P}}{ }^{2}\right)$ is a good fit for the distribution of \hat{P} ?
c. Based on your observations of the normal probability plot, for what values of n and p is the normal distribution model most appropriate?

Normal approximation to the theoretical distribution of \hat{P} from $\operatorname{Bi}(n, p)$

Navigate to Page 6.2. In split page, the left hand panel shows the same information as previously observed in Page 4.2: the theoretical distribution of \hat{P}, based on observations from the $\operatorname{Bi}(n, p)$ distribution. The right-hand panel shows the normal distribution with mean and standard deviation corresponding to those of $\operatorname{Bi}(n, p)$ - that is, $\mathrm{N}\left(\mu_{\hat{P}}, \sigma_{\hat{P}}{ }^{2}\right)$, where $\mu_{\hat{P}}=\mathrm{E}(\hat{P})=p$ and $\sigma_{\hat{P}}^{2}=\frac{p(1-p)}{n}$.

Adjust the values of n and p.

Question 14

a. As the values of n and p are varied, what are some similarities and differences between the normal and binomial distributions, displayed on Page 6.2.
b. From the graphs on Page 6.2, for what values of n and p is the normal distribution model of the binomial distribution most appropriate? Does this accord with your observations on Page 5.4?

Question 15

Write a brief summary in point form, of what you have learnt about the distribution of sample proportions, as a result of doing this activity.

Follow up on this activity

In this activity we considered the use of proportions from samples to estimate population proportions. The follow-up activity, Confidence intervals for proportions, explores obtaining intervals within which we are reasonably sure (with a given level of confidence) that the value of the population proportion will lie.

END OF ACTIVITY

[^1]Author: Frank Moya

[^0]: ${ }^{1}$ http://www.abs.gov.au/ausstats/abs@.nsf/mf/8153.0
 (C) Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes

 Author: Frank Moya provided all acknowledgements associated with this material are maintained.

[^1]: © Texas Instruments 2015. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

