\qquad

	Opposite sides \cong	Adjacent sides \cong	$\begin{aligned} & \text { All } \\ & \text { sides } \\ & \cong \end{aligned}$	Both sets of opposite sides $\\|$	Adjacent sides \perp	Consecutive angles supplementary	Opposite angles \cong	Consecutive angles \cong	Diagonals are \cong	Diagonals bisect each other	Diagonals bisect angles	Diagonals are \perp
Parallelogram	Yes	No	No	Yes	No	Yes	Yes	No	No	Yes	No	No
Rhombus	Yes	Yes	Yes	Yes	No	Yes	Yes	No	No	Yes	Yes	Yes
Rectangle	Yes	No	No	Yes	No	No						
Square	Yes											
Trapezoid	No *	No	No	Exactly one set \\|	No *	No *	No	No	No	No	No	No
Kite	No	Two pairs congruent	No *	No *	Yes							
Isosceles Trapezoid	One set congruent	No	No	Exactly one set \|		No	No *	No	No *	Yes	No	No

* There are situations where the characteristic could be true, but it may not be all cases. For example, in an isosceles trapezoid each pair of angles are supplementary but all pairs are not and in a kite one diagonal is bisected but not both. Make sure students recognize these situations.

