Triangle Midsegments Student Activity

Open or create the TI-Nspire document Triangle_Midsegments.tns.

In this activity, you will collect length and area data from a triangle and one of its midsegments. You will investigate relationships for the measurement data with a spreadsheet.

Move to page 1.2.

Part 1—Finding the ratio of the side to the segment

A *midsegment* is a segment connecting the midpoints of two sides of a triangle.

Page 1.2 shows $\triangle ABC$ with midsegment \overline{MN} parallel to side \overline{BC} . MN and BC have been defined as variables.

1. What can you say about the relationship between $\triangle ABC$ and ΔAMN ? How do you know?

You will capture these segment measurements into the spreadsheet on page 1.3. Drag point B or point C to form a new triangle. Press [ctrl] . This captures the current lengths for \overline{MN} and \overline{BC} .

Press [ctrl] b to look at the spreadsheet. The measurements appear in rows.

Return to page 1.2. Drag point *B* or point *C* to form another triangle. Press [ctrl] . Repeat four more times.

Return to page 1.3. Examine the data in Columns A and B.

1.1 1.2 1.3 ▶ Triangle_Mnts	RAD 🚺 🗙
Triangle Midsegments	

Name

Class

Triangle Midsegments Student Activity

2. What comparison can you make between the two columns?

Move your cursor to the top of Column C (above the diamond row). Name this column *Iratio* and press enter.

In the diamond row, enter a formula using the column names for Columns A and B. To do this, move your cursor to the diamond row of Column C and press . Press var and select *lbc* from the list. Press ÷. Press var and select *Imn* from the list. Press enter.

Press enter again.

- 3. What does the formula mean?
- 4. What does the result of the formula tell you about side \overline{BC} and the midsegment \overline{MN} ?

Part 2—Finding the ratio of the areas

Draw $\triangle AMN$. To do this, return to page 1.2. Press **Menu > Shapes > Triangle**. Click on each of the points *A*, *M*, and *N*. Press **esc** to exit the **Triangle** tool.

5. What do you predict the ratio of the areas of $\triangle ABC$ and $\triangle AMN$ to be?

Measure the areas of $\triangle AMN$ and $\triangle ABC$. To do this, press **Menu > Measurement > Area**. Click on $\triangle AMN$ by hovering over \overline{MN} . Move the measurement to a clear area of the screen and click to drop it. Repeat to measure $\triangle ABC$. Press esc to exit.

Name _____ Class _____

🖣 1.1 1.2 1.3 🕨 "Trianglents 🗢 👘 RAD 🕼 🗙						X
P	A lmn	B lbc	С	D		2
=	=capture(=capture(Π
1	5.4905	10.981				
2	5.00085	10.0017				
З	6.42953	12.8591				
4	3.00424	6.00848				
5	4.25213	8.50427				
A1	=5.490504	8012895				

🖣 1.1 1.2 1.3 🕨 'Trianglents 😓 🛛 🖏 🕅						
P	A lmn	^B lbc	^C Iratio	D		Ê
=	=capture(=capture(='lbc/'lmn			ΙΠ
1	5.4905	10.981				TH
2	5.00085	10.0017				
3	6.42953	12.8591				
4	3.00424	6.00848				
5	4.25213	8.50427				
С	c lratio:='lbc/'lmn					۲

Triangle Midsegments Student Activity

Define each area measure as a variable. To do this, move your cursor to the measurement for $\triangle ABC$. Click once. Press **tri var**. Then type **aabc** and press **enter**. Repeat for $\triangle AMN$, naming the variable *aamn*.

To analyze the ratio of the areas, capture some of the areas to the spreadsheet. To do this, move to page 1.3. Move your cursor to the top of Column D and name the column *abc*. Name Column E *amn*.

Move your cursor to the diamond row of Column D. Press **Menu > Data > Data Capture > Automated Data Capture**. Enter the variable *aabc* (by typing or by using the var key as in column C). Press enter. Repeat to define Column E to capture the area of $\triangle AMN$.

Return to page 1.2. Drag point B or point C for a few seconds. The spreadsheet is rapidly capturing data as you drag.

Return to page 1.3. Use Column F to determine the ratios of the areas. Name Column F *aratio* using a procedure similar *to Iratio*.

- 6. Give and explain a ratio that describes the relationships between the areas of $\triangle ABC$ and $\triangle AMN$.
- 7. What is the ratio of the perimeters of the two triangles? How do you know?

Name _____ Class

•	1.1 1.2 1.	3 🕨 *Triang	lents →	RAD 🟌	X
P	B lbc	^C Iratio	D abc	E amn	^
=	=capture	='lbc/'lmn	=capture(=capture	:C
1	10.981	2.	116.18	29.04	5
2	10.0017	2.			
3	12.8591	2.			
4	6.00848	2.			
5	8.50427	2.			
E 1	=29.04500	8108856		•	٠

🖣 1.1 🛛 1.2 🚺 🕨 "Trianglents 🗢 👘 RAD 🕼 🗙						
P	^C lratio	D abc	E amn	F aratio	^	
=	='lbc/'lmn	=capture(=capture(
1	2.	116.18	29.045			
2	2.	109.299	27.3248			
3	2.	104.58	26.1451			
4	2.	103.958	25.9894			
5	2.	102.778	25.6945		~	
F a	•	•				