Triangle Midsegments \qquad

In this activity, you will collect length and area data from a triangle and one of its midsegments. You will investigate relationships for the measurement data with a spreadsheet.

Open or create the TI-Nspire document

 Triangle_Midsegments.tns.
Move to page 1.2.

Part 1—Finding the ratio of the side to the segment

A midsegment is a segment connecting the midpoints of two sides of a triangle.

Page 1.2 shows $\triangle A B C$ with midsegment $\overline{M N}$ parallel to side $\overline{B C}$. $M N$ and $B C$ have been defined as variables.

1. What can you say about the relationship between $\triangle A B C$ and
 $\triangle A M N$? How do you know?

You will capture these segment measurements into the spreadsheet on page 1.3. Drag point B or point C to form a new triangle. Press $\overline{\operatorname{ctrl}} \square$. This captures the current lengths for $\overline{M N}$ and $\overline{B C}$.

Press ctrl to look at the spreadsheet. The measurements appear in rows.

Return to page 1.2. Drag point B or point C to form another triangle.
 Press ctrl \quad. . Repeat four more times.

Return to page 1.3. Examine the data in Columns A and B.
\qquad
2. What comparison can you make between the two columns?

Move your cursor to the top of Column C (above the diamond row). Name this column Iratio and press enter.

In the diamond row, enter a formula using the column names for Columns A and B. To do this, move your cursor to the diamond row of Column C and press . Press var and select lbc from the list. Press \div. Press var and select $I m n$ from the list. Press enter.

Press enter again.
3. What does the formula mean?

		1 Trimogle...nts \square		M0\% 80
	A m n	${ }^{\text {lbc }}$	${ }^{\text {c ratio }}$	
$=$	=capture(=capture	=1b/ $/ \mathrm{mm}$	
1	5.4905	10.981		
2	5.00085	10.0017		
3	6.42953	12.8591		
4	3.00424	6.00848		
5	4.25213	8.50427		
(1 ratio $=1 \mathrm{lb} / \mathrm{lmn}$				4

4. What does the result of the formula tell you about side $\overline{B C}$ and the midsegment $\overline{M N}$?

Part 2-Finding the ratio of the areas

Draw $\triangle A M N$. To do this, return to page 1.2. Press Menu > Shapes > Triangle. Click on each of the points A, M, and N. Press esc to exit the Triangle tool.
5. What do you predict the ratio of the areas of $\triangle A B C$ and $\triangle A M N$ to be?

Measure the areas of $\triangle A M N$ and $\triangle A B C$. To do this, press Menu > Measurement > Area. Click on $\triangle A M N$ by hovering over $\overline{M N}$. Move the measurement to a clear area of the screen and click to drop it. Repeat to measure $\triangle A B C$. Press esc to exit.

\qquad

7. What is the ratio of the perimeters of the two triangles? How do you know?

