Linear and non-Linear Relationships
ACMNA296 - Assessment

Name:

Solutions

Score:
\qquad

Assessment

Navigator

Student

Teacher:
Q.1. Which rule would produce the table of values:

$x:$	0	1	2	3	4
$y:$	3	5	7	9	11

a) $y=x$
b) $y=2 x+1$
c) $y=2 x+3$
d) $y=x^{2}+3$
e) $x^{2}+y^{2}=9$
Q.2. Determine the missing number (a) from the table:

$x:$	1	2	5	10
$y:$	2	5	a	29

$$
a=14
$$

Q.3. From the table, write a rule relating x and y :

$x:$	2	4	6	8
$y:$	0	8	16	24

$$
y=4 x-8
$$

Q.4. The equation for the graph opposite could be:
a) $y=x^{2}+3$
b) $x^{2}+y^{2}=4$
c) $y=2 x-4$
d) $y=3 x+3$
e) $x+y=3$

Q.5. Which rule would produce the table of values:

$x:$	0	1	2	3
$y:$	4	5	8	13

a) $y=x$
b) $y=x+4$
c) $x y-4 x+4=y$
d) $y=4 x^{2}+4$
e) $y=x^{2}+4$
Q.6. Determine the missing number (a) from the table:

$x:$	0	1	2	3
$y:$	0	a	16	36

$$
a=4
$$

Q.7. Let shape $=\boldsymbol{x}$ and blocks $=\boldsymbol{y}$. Write a rule below for y in terms of x.
Shape $=1$
Blocks $=1$

Shape $=4$
Blocks $=13$

$$
y=4 x-3
$$

Q.8. Write a rule for the sum (\boldsymbol{y}) of the first (\boldsymbol{x}) odd numbers. The diagrams below may help formulate an answer.

Sum of first ' 1 ' odd numbers.

$$
y=x^{2}
$$

Q.9. A rectangle is 5 units longer than it is wide. Write a rule for the area (\boldsymbol{a}) of the rectangle in terms of the width (\boldsymbol{w}). The sequence of examples below may help formulate an answer.

$$
a=w(w+5)
$$

Q.10. Let shape $=\boldsymbol{x}$ and blocks $=\boldsymbol{y}$. Write a rule below for y in terms of x.

Shape $=1$
Blocks $=1$

$$
y=2 x^{2}-2 x+1 \text { or } y=x^{2}+(x-1)^{2}
$$

Note: The second response can be generated visually by a number of means such as splitting the shape into two sections and considering the top section as $1+3+5+7 \ldots$. And the bottom section being $+1+3+5$ therefore x^{2} and $(x-1)^{2}$ added together.

