Student Worksheet 2 TI-15 Explorer ${ }^{\text {™ }}$: Prime Factors

Name:

1. The number 72 can be factored to 9×8 or 12×6 or ...?
a) Find some other ways to factorise 72 into the product of two whole numbers.

How will you know if you have all the possible pairs?
$9 \times 812 \times 6$
\qquad
\qquad
\qquad
\qquad
b) Find a way to factorise 72 into the product of 3 different factors.

Are there any other ways to do this? Find as many as you can with a partner.
You can use the calculator if needed.
\qquad
\qquad
\qquad
\qquad
c) What about 4 different factors or 5 different factors ...? Investigate.
\qquad
\qquad
\qquad
\qquad

Student Worksheet 2 Tl-15 Explorer ${ }^{\text {m" }}$: Prime Factors

You can write 72 as the product of only its PRIME factors which means that only prime numbers can be used so the prime factorisation of:

72 is $2 \times 2 \times 2 \times 3 \times 3$ (called expanded form) which is usually written in shorthand form as:
72 is $2^{3} \times 3^{2}$ (called the index or exponent form)
(The small 3 indicates that there are 3 twos multiplied together and the small 2 indicates that there are 2 threes multiplied together.)

To do this, divide the original number by 2 as many times as you can, then by 3 and so on with prime numbers only, recording as you go.
d) Write each of the numbers from the table in worksheet 1 as the product of ONLY its Prime factors in the table below. You may need to use a prime factor more than once! - as you can see with 72.

Number	As the product of only PRIME Factors	How many factors does this number have altogether? Refer back to Worksheet 1
24		
17		
36		
25		12
50	$2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2}$	
64		
72		

Student Worksheet 2
 TI-15 Explorer ${ }^{\text {™ }}$: Prime Factors

2. Use the calculator to find the number represented by:
a) 2^{4} (Press either $2 \times 2 \times 2 \times 2$ or $2^{\wedge} 4$. This is called the EXPANDED form.)
b) $2^{2} \times 3^{2}$
c) $2 \times 3^{3} \times 5$
d) $2^{3} \times 3 \times 5^{2} \times 7$
3. To write 24 as the product of its prime factors follow these steps on the calculator:

First: Set up the TI-15 as indicated below
a) Press Frac button to enter the Fraction Menu. The selection $\underline{U n / d} n / d$ is displayed. This lets you choose to display fractions results as mixed numbers ($\mathbf{U n / d}$) or improper fractions (n / d).
b) Press the left \& and right \Rightarrow arrow keys to move the underline to choose the display you want.
c) In this case, move the underline to n / d.
d) Press the down arrow - and move the underline to MAN.

This lets you choose to simplify fractions manually (using the Simp key).
e) Select Enter

Student Worksheet 2
 Tl-15 Explorer ${ }^{\text {™ }}$: Prime Factors

Enter the fraction $\frac{24}{24}$

1. Press 2 回
2. Press Simp Enter. The fraction $\frac{12}{12}$ is displayed and at the top of the screen is $\frac{n}{d} \div \frac{N}{D} \rightarrow \frac{n}{d}$ is visible.
This means that the fraction $\frac{12}{12}$ can be simplified further.
3. Press Fac and a 2 is shown, meaning that the fraction has been simplified by dividing numerator and denominator by 2.
4. This is the first prime factor of 24. Press Enter and the fraction reappears.
5. Press Simp Enter. The fraction $\frac{6}{6}$ is displayed and at the top of the screen is $\frac{n}{d} \div \frac{N}{D} \rightarrow \frac{n}{d}$
is still visible.

Press Fac and a 2 is again shown. This means we have another factor of 2. Record the factors as you find them.
6. Repeat these steps until $\frac{1}{1}$ appears and the symbols at the top are now $\frac{n}{d} \div$ which indicates that no further simplification is possible.
7. Now we have the prime factors of 24 as $2 \times 2 \times 2 \times 3=2^{3} \times 3$
4. Use this method to check the prime factors of 72 found above in $Q 4$.
5. Try these:
a) $\frac{30}{30}$ \qquad
b) $\frac{48}{48}$ \qquad
c) $\frac{67}{67}$

Each time you think you have the factors of the given number check using the calculator to multiply the factors together.

Student Worksheet 2 Tl-15 Explorer ${ }^{\text {™ }}$: Prime Factors

6. Find a number with exactly 6 different factors. How many others are there with exactly 6 different factors.
(Hint: $8=2 \times 2 \times 2=2^{3}$ which has 4 factors: $1,2,4$ and 8)
\qquad
\qquad
\qquad
\qquad
7. Find a number with exactly 6 different PRIME factors. How many others are there?
\qquad
\qquad
\qquad
\qquad
8. Find the SMALLEST number with exactly 6 factors, which need not be prime factors.
\qquad
\qquad
\qquad
\qquad
9. Challenge: Find the smallest number with exactly 20 factors.
\qquad
\qquad
\qquad
\qquad
