Activity 4

Describing Categorical Data

Topic 17 looks at the distribution of the population of the United States by the categorical variable race for one age group. Percentages are calculated, and visual comparison is made with a bar chart.

Topic 18 extends the discussion to a two-way table of race by age group. Age by itself is a quantitative variable, but ages are grouped into different categories (youngest, older, ...oldest) to have a manageable table. Percents and bar charts are compared.

Topic 17—Bar Charts

4 For this topic, set the mode for two decimal places.
(Refer to "Setting Modes" under Do This First.)
Population data, in thousands, for those under 15 years old follows.

Race:	White	Black	Asian Pacific Islander	Am. Indian Eskimo, Aleut
(thousands):	45510	8922	2243	664

(Source: Population by Age and Race 1994, Statistical Abstract of US 1995.)

1. Put the data in the spreadsheet in \mathbf{L}, as shown in screen 1.
2. With the fifth row highlighted, press 2nd [LIST] <MATH> 5:sum(L_{1}, as shown in the bottom line of screen 1 .

Activity 4, Describing Categorical Data (cont.)

3. Press ENTER for the first column of screen 2 with the sum of the first four rows showing in the fifth row.
4. Highlight L_{2} as shown in screen 2, and type $\mathbf{L}_{1} \div \mathrm{L}_{1} \square 5$ $\square \times 100$ in the bottom line.

Press ENTER for the second column in screen 3, which lists the percent of those under 15 years old by race (79.37, 15.56, 3.91, and 1.16 for a total of 100 percent).
5. Enter 1, 2, 3, 4, and 9 in L3, as shown in screen 3.

To get a visual comparison of the difference in population for each race, you will construct a bar chart. This is easy to do by hand and not difficult with the TI-83. The Histogram plot of the TI-83 is used, so you might want to look at Topic 2.
Screen 4 sets up for a Histogram with the XIist of L3, which contains the values $1,2,3,4$, and 9 for reasons explained in the next paragraph. The Ylist is L2, which contains the percent of each race.
Note that the WINDOW in screen 5 has Xmax $=4.5$ and Xscl $=$ 0.5. The first bar starts with the first $x=1$ and has a width of 0.5 , so there is a gap between bars with the second bar starting at $x=2$. The fifth value in L_{2} has the total of 100 percent and $x=9$ in L_{3}, which is beyond $\mathrm{Xmax}=4.5$. Thus, a bar for the total will not be on the screen.

The bar chart in screen 6 clearly shows the large majority of whites in the population of those under 15 years old. Bar charts are often given in order of largest magnitude to smallest. The plot compares percents, but it has the exact proportions and shape of one that compares population counts. The percents add up to 100 percent. If population counts were used, they would add up to the total population.

(3)

(4)
(5)

Topic 18-Two-Way Table

A more complete table of the data used in Topic 17 of the U.S. population of age by race, including more age groups, is given below. The population counts are in thousands.

Years:	White	Black	Asian Pacific Islander	Am. Indian Eskimo, Aleut
$0-14$	45510	8922	2243	664
$15-29$	44350	8020	2192	558
$30-44$	53045	7878	2400	512
$45-59$	35040	4190	1295	282
$60-74$	25405	2584	665	140
≥ 75	13120	1080	193	53

If you are only interested in a particular row or column of data, then put that data in L_{1} and proceed as shown in Topic 17. If you wish to make many comparisons, then proceed as follows.

1. Set the mode to two decimals as shown in Do This First at the beginning of this handbook.
2. Put the four columns of data (of six rows each) in lists L1 to L4 (screen 7), and then calculate the column sums as follows.
a. From the home screen, press 2nd [LIST] <MATH> 5:sum(L_{1} STO L1 $\square 7 \square$. This takes the sum of the values in L_{1} (six values) and stores the sum in the seventh row of L_{1}.
b. Use 2nd [ENTRY] and edit the list used to calculate the sum for each list, as shown in screen 7.
3. Use $\mathrm{L}_{1} \oplus \mathrm{~L}_{2} \boxplus \mathrm{~L}_{3} \square \mathrm{~L}_{4}$ STO $\bullet \mathrm{L}_{5}$ ENTER to store the sum of each row (age group) in Ls. (See screen 8.)

The complete table of data, including the row and column totals, is shown in screens 9 and 10 and stored in lists L1 to L5. You will also want to save this data in a matrix (see the next section).

Note: If your data source gave totals, you could have entered them. Because of rounding, they may have been a bit different from the totals obtained here.

L1	Lz	L3	L4	L5
44500	1982.0	243.0		5739
44850		2190.0	55.80	${ }^{51} 1850$
35040	4190.6	12850	2ECOO	40 Cog
${ }_{1} 120$	254.4		14000	- 18445
216470	3264	昭咟. 6	2 COPa	260341
L+C) $=45.510$			54	
(9)			(10)	

Activity 4, Describing Categorical Data (cont.)

Saving Data in Matrix [A]

To save the original count data, including totals, so you can make calculations that change the values in the spreadsheet, proceed as follows.

1. Press [2nd [LIST] <OPS> $0:$ Listrmatr $\mathrm{L}_{1} \square \mathrm{~L}_{2} \square \mathrm{~L}_{3} \square \mathrm{~L} 4$ \square $\mathrm{L}_{5} \square$ [A], where [A] is pasted by pressing [MATRX <NAMES> 1 :[A] (see screen 11).
2. Press ENTER for Done, and then press MATRX <NAME> $1:[A]$ to paste [A] to the home screen, as shown in the last line of screen 11.

After you paste [A] and press [ENTER, part of matrix [\mathbf{A}] is revealed, as shown in screen 12.
3. Press the cursor control keys to reveal the rest of matrix [A].
The first column of matrix [\mathbf{A}] is list \mathbf{L}, the second column, L2, and so on.

Calculating Column Percents

To calculate column percents, proceed as follows.

1. Take a list , and divide it by the seventh value (the total).
2. Multiply by 100 .
3. Store the resulting percents to the same list.

This procedure is done for L_{1} to L_{5} in screens 13 and 14 . The results are revealed in the spreadsheet in screens 15 and 16.
4. Edit list L6, and a newly created list named LC7 to contain values to draw comparative bar graphs.
The results are shown in screen 17.

(13)

(15)
(16)

L6	6	-----
nimi	1.5	------
\%	\%	
	4.5	
	5.5	
9.00	9.60	
L6C $19=1$		

Drawing Comparative Bar Charts

Before starting here, it is a good idea to first read Topic 17 about single bar charts.

1. To get a visual comparison of the age distributions for two groups, white and black, set up the WINDOW and Plot1 and Plot2 for two Histograms, as shown in screens 18, 19, and 20.
2. Press TRACE for the bar charts, as shown in screen 21.

As you can see from the charts and from the previous table of column percents, a larger proportion of blacks are in the two youngest age groups than the proportion of whites in the same age groups. (The shading can be added by hand or in Dot mode with six commands: 2nd [DRAW] 7:Shade($0 \square L_{2} \square 1 \square \square$ $1.43<x \square \square<1.57 \square \square$, and then 7:Shade($0 \square$ L2 $\square$$2.43<x \square \square \times 2.57 \square \square$, and so on; where $<$ is pasted from 2nd [TEST] $5:<$.)
When making comparisons, do not confuse percents with counts. The fact that a larger percentage of blacks are in the youngest groups than the percentage of whites in the same groups does not mean that there are more blacks than whites in these groups.

Before you can continue making the comparative bar charts (described below), you must switch some data about as follows.
3. Save the column percents table in matrix [C] by pressing 2nd [LIST] <OPS> 0:List>matr($\mathrm{L}_{1} \square \mathrm{~L}_{2} \square \mathrm{~L}_{3} \square$ $\mathrm{L}_{4} \square \mathrm{~L}_{5} \square$ [C] ENTER for Done. (See screen 22.)
4. Return the original data, with totals, in matrix [A] to the spreadsheet by pressing 2nd [LIST] <OPS> A:Matr>list($[\mathrm{A}] \square \mathrm{L}_{1} \square \mathrm{~L}_{2} \square \mathrm{~L}_{3} \square \mathrm{~L}_{4} \square \mathrm{~L}_{5}$ ENTER for Done. (See screen 22.)

To continue making the comparative bar charts:
5. Compare the counts for each age group with the original count data as shown in column L_{1} and L_{2}. The plots are set up the same as the previous bar charts of percents, but Ymin and Ymax have been adjusted to include all the counts (see screen 23).
6. Press TRACE, and add shading for the bar charts shown in screen 24.
You can see that there are many more whites than blacks in all age groups.

Activity 4, Describing Categorical Data (cont.)

Calculating the Percent of Each Cell

From the last value in L5 in screen 10, you can see that the grand total of the population is $\mathbf{2 6 0 , 3 4 1}$ (thousand).
In the first age group (0 to 14 year olds), there are 45,510 (thousand) whites and 8,922 (thousand) blacks. This is about 17.5 percent of the whole population for whites in this age group, $100 *(45510 / 260341)=45510 *(100 / 260341)=17.48$, and about 3.4 percent for blacks in this age group, 8922 *
$(100 / 260341)=3.43$. These calculations are shown in screen 25 .
All the cells of the table (stored in [A]) can be multiplied by 100 and divided by $\mathbf{2 6 0 , 3 4 1}$, as shown in screen 26 . Note that the 17.48 percent and 3.43 percent you calculated above are in the first row of the resulting matrix (screen 27).

Calculating Row Percents

The example data for Topic 17 is really the first row of the twoway table. To calculate the percents with the data and totals in list $\mathbf{L} 1$ to $\mathbf{L 5}$, proceed as follows.

1. Enter $\mathrm{L}_{1} \otimes \mathbf{1 0 0} \mathrm{~L}_{5}$ STO* L_{1} ENTER for the first two lines in screen 28.
2. Press [nd [ENTRY] to recall the last entry, press \square to move the flashing cursor over \mathbf{L}_{1}, and then change \mathbf{L}_{1} to L2.
3. Press \triangle to jump to the first \mathbf{L}, change this to \mathbf{L}, and then press ENTER for the third and fourth lines of screen 28.
4. Repeat the above steps for $\mathbf{L} \mathbf{3}, \mathbf{L} 4$, and $\mathbf{L} 5$, which are made up of the totals from the other rows, and thus all have values of 100 percent. (See the fourth line of screen 29.)

You can observe the row percentages in \mathbf{L}_{1} to \mathbf{L}_{5} under STAT 1:Edit.

(26)

(27)

5. Store the results in matrix $[B]$ as follows.
a. Press 2nd [LIST] <OPS> 0:Listrmatr(L1 \square L2 \square L3 $\square \mathrm{L}_{4}^{\square} \mathrm{L}_{5} \square[\mathrm{~B}]$, where $[\mathrm{B}]$ is pasted by pressing MATRX <NAMES> 2 :[B] (see screen 29).
b. Press ENTER for Done, and then press MATRX <NAMES>2:[B] to paste [B] to the home screen, as shown in the last line of screen 29.

After you paste [B] and press ENTER, part of matrix [B] is revealed, as shown in screen 30.
6. Press the cursor control keys to reveal the rest of matrix [B].

The values in the first row (79.37, 15.56, 3.91, and 1.16 percent) are the same as shown in Topic 17.

Making Bar Charts for Rows

If you want the rows of percents to be set up in lists to construct bar charts with the TI-83, one solution is to store the transpose of matrix $[B]$ in matrix $[E]$ with the original rows of [B] now columns in [E].

1. First, paste [B] to the home screen, and then press MATRX <MATH> $2:^{\top}$ STO* [E] for the first line in screen 31.
2. Press ENTER for matrix [E], part of which is shown in screen 31.

The first row of [B] represents the youngest age groups' percents now located in the first column of [E].
3. Transfer these lists from [E] to the spreadsheet, and plot bar charts as shown previously in this topic.

(30)

