According to the Standards:

Instructional programs from preK-grade 12 should enable students to:

- Recognize and use connections among mathematical ideas
- Use the language of mathematics to express mathematical ideas precisely
- Select, apply and translate among mathematical representations to solve problems

In grades 9-12 students should

1. Students should develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results.

Calculus Scope and Sequence: Applications of Definite Integrals

Keywords: average value

Description: This activity will use the definite integral to find the average value of a function. It will show it working the steps of the 2^{nd} Fundamental Theorem, then will show the alternate approach of having the capabilities of the calculator work the entire problem at once

Find the average value of the function: $f(x) = \sqrt[3]{x}$ on [0,1]

The formula for the average value of a function is: $\frac{1}{b-a}\int_{a}^{b} f(x)dx$

We find the integral from the Homescreen in F3-Calc-#2 and it requires the following arguments: (function, variable)

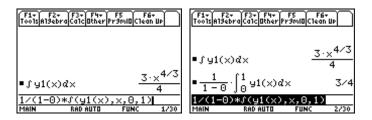
User tips:

- Store the function in one of the Y= slots, it allows easier access!
- (make sure you enclose the 1/3 in parentheses when you are typing it in, otherwise the TI-89 will follow the order of operations you gave it, which will NOT be what you want here)
- You can quickly store your result by going to the place on the Y=screen you want to be and press 2nd-Ans.
- You can also use the Copy-Paste commands found in F1-Tools

Now calculate the integral:

Store it in y2

F1+ F2+ F3+ F4+ F5 F6+	F1+ F2+ (3) 85, 85, 85, 85, 85, 85, 70015[2000]: 35, 7 約5, 75, 85, 75, 85, 75, 85, 75, 10	F1+ F2+13 84 84 84 84 84
ToolsAl9ebraCalcOtherPr9miDClean UP	+PLOTS	Tools zoom 34 2 811-51 84 84
	√y1=× ^{1∕3} y2= y3=	$\sqrt{y_{1=x}^{1/3}}$ $\sqrt{y_{2=3} \times \frac{4/3}{4}}$
■∫y1(x)dx <u>3·x4/3</u>	94= 95= 96= 97=	y2 4 y3= y4= y5=
∫(y1(x),x)	y2(x)=ans(1)	Y3(X)=
MAIN RADAUTO FUNC 1/30	Main Rad Auto Func	Main rad auto func


Now evaluate the rest of the formula:

F1+ F2+ F3+ F4+ F	5 F6+
ToolsAl9ebraCalcOtherPrs	ImIDC1ean Up
■∫y1(×)d×	<u>3·×</u> 4/3 4
$=\frac{1}{1-0}\cdot(y^2(1)-y^2)$	(0)) 3/4
1/(1-0)*(y2(1)-y)	2(0))
Main Rad Auto	FUNC 2/30

Alternately, the TI-89 gives you the capability of doing the entire average value at once:

You can use the same integral command (F3-Calc-#2) as a definite integral by including in the syntax the boundaries:

(function, variable, lower bound, upper bound)

