\qquad
\qquad

On page 1.2, the diagram shows a circle with equation $x^{2}+y^{2}=36$. Suppose you were asked to find the slope of the curve at $x=2$.

- Why might this question be potentially difficult to answer?
- What strategies or methods could you use to answer this question?

Problem 1 - Finding the derivative of $\boldsymbol{x}^{2}+y^{2}=36$

The relation $x^{2}+y^{2}=36$ in its current form implicitly defines two functions, $f_{1}(x)=y$ and $f_{2}(x)=y$. Move to page 1.3. Find these two functions by solving $x^{2}+y^{2}=36$ for y.

$$
f_{1}(x)=
$$

$$
f_{2}(x)=
$$

This confirms that $f_{1}(x)$ and $f_{2}(x)$ explicitly define the relation $x^{2}+y^{2}=36$.
One way to find the slope of a tangent drawn to the circle at any point (x, y) located on the circle is by finding the derivative of $f_{1}(x)$ and $f_{2}(x)$.

$$
\frac{d y}{d x} f_{1}(x)=\quad \frac{d y}{d x} f_{2}(x)=
$$

On page 1.4, enter the equation of your derivative for $f_{1}(x)$ to see if its graph matches the graph of the derivative displayed on the right side of the screen.
On page 1.5 , determine the slopes of the tangents to $x^{2}+y^{2}=36$ at $x=2$.
Note: The Math Box is set up to evaluate the derivative of $f_{1}(x)$ at $x=2(\boldsymbol{f}(x)$ from page 1.4). After determining the slope of the tangent to $f_{1}(x)$, edit the command to determine the slope of the tangent to $\mathrm{f}_{2}(x)$ at $x=2$.

$$
\frac{d y}{d x} f_{1}(2)=\quad \frac{d y}{d x} f_{2}(2)=
$$

Another way to find the slopes of the tangents is by finding the derivative of $x^{2}+y^{2}=36$ using implicit differentiation. Advance to page 1.6 and evaluate the Math Boxes by pressing enter in the Math Box. On a Calculator application page, you can find the impDif command by selecting MENU > Calculus > Implicit Differentiation. Enter $\operatorname{impDif}\left(x^{2}+y^{2}=36, x, y\right)$ to find $d y / d x$.

$$
\frac{d y}{d x}=
$$

Use this result to find the slopes of the tangents to $x^{2}+y^{2}=36$ at $x=2$.

- Are your answers consistent with those found earlier?
- Rewrite the implicit differentiation derivative in terms of x. Show that, for all values of x and y, the derivatives of $f_{1}(x)$ and $f_{2}(x)$ that you found earlier are the same as those found using the impDif command.

Problem 2 - Performing implicit differentiation by hand

Move to page 2.1. To find the derivative of a relation $F(x, y)$, take the derivative of y with respect to x of each side of the relation. Looking at the original example, $x^{2}+y^{2}=36$, we get:

$$
\begin{equation*}
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}(36) \rightarrow \frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x} \tag{36}
\end{equation*}
$$

Evaluate the following by hand.

$$
\frac{d}{d x}\left(x^{2}\right)=\quad \frac{d}{d x}(36)=
$$

Use the Derivative command to find $\frac{d}{d x}\left(y^{2}\right)$. Set up the expression up as $\frac{d}{d x}\left((y(x))^{2}\right)$. Notice that $y(x)$ is used rather than just y. This is very important because it reminds the device that y is a function of x.

$$
\frac{d}{d x}\left(y^{2}\right)=
$$

You have now evaluated $\frac{d}{d x}\left(x^{2}\right), \frac{d}{d x}\left(y^{2}\right)$, and $\frac{d}{d x}(36)$. Replace these expressions in the equation $\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}\left(y^{2}\right)=\frac{d}{d x}(36)$ and solve for $\frac{d y}{d x}$.

Compare your result to the one obtained using the impDif command.

Problem 3 - Finding the derivative of $\boldsymbol{y}^{2}+\boldsymbol{x y}=2$

Move to page 3.1. The relation $y^{2}+x y=2$ can also be solved as two functions, $f_{1}(x)$ and $f_{2}(x)$, that explicitly define it.

- What strategy can be used to solve $y^{2}+x y=2$ for y by hand?
- Solve $y^{2}+x y=2$ for y and use the Solve command to check your answer. (On a Notes page, this command is found under MENU > Calculations > Algebra > Solve.)

The derivative of $y^{2}+x y=2$ can then be found by finding the derivatives of $f_{1}(x)$ and $f_{2}(x)$. However, the derivative can be found more easily using implicit differentiation.
Use implicit differentiation to find the derivative of $y^{2}+x y=2$. Check your result by using the impDif command on page 3.2. (Hint: The product rule must be used to find the derivative of $x y$.)

$$
\frac{d y}{d x}=
$$

You can also verify your result graphically. Advance to page 3.4 , which displays a graph of $y^{2}+x y=2$. Tangents are drawn to the curve and their corresponding slopes are shown on the screen.

- Use the derivative you found for $y^{2}+x y=2$ to calculate the slopes at $x=-6$.
- Do your calculations give the same slopes shown as m_{1} and m_{2} on the screen?
- Drag the open circle on the x-axis and check your result for a different ordered pair.

Extension - Finding the derivative of $\boldsymbol{x}^{3}+\boldsymbol{y}^{\mathbf{3}}=\mathbf{6 x y}$

The relation $x^{3}+y^{3}=6 x y$ cannot be solved explicitly for y. In this case implicit differentiation must be used.

- Find the derivative of $x^{3}+y^{3}=6 x y$ and use the impDif command on the Notes page on 4.1 and use the 'show' slider on page 4.2 to graphically verify your result.

$$
\frac{d y}{d x}=
$$

- Use this result to find the slopes of the tangents to $x^{3}+y^{3}=6 x y$ at $x=1$.
(Hint: Use the Solve command to find the y-values that correspond to $x=1$.)

