
Lua Scripting API Reference Guide

This reference guide applies to TI-Nspire™ software version 4.4. To obtain the latest version of the documentation, go to
education.ti.com/Lua/eGuide.

https://education.ti.com/html/webhelp/EG_TINspireLUA/EN/index.html

i

Important Information
Except as otherwise expressly stated in the License that accompanies a program, Texas Instruments makes no warranty, either
express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall
Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising
out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form
of action, shall not exceed the amount set forth in the license for the program. Moreover, Texas Instruments shall not be liable
for any claim of any kind whatsoever against the use of these materials by any other party.

© 2011 - 2016 Texas Instruments Incorporated

All rights reserved

Trademarks and copyrights

The TI-Nspire™ software uses Lua as scripting environment. For copyright and license information, see
http://www.lua.org/license.html.

The TI-Nspire™ software uses Chipmunk Physics version 5.3.4 as simulation environment. For license information, see
http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/.

Microsoft® and Windows® are registered trademarks of Microsoft Corporation in the United States and/or other countries.

Mac OS®, iPad® and OS X® are registered trademarks of Apple Inc.

Unicode® is a registered trademark of Unicode, Inc. in the United States and other countries.

Bluetooth® word mark and logos are registered trademark owned by Bluetooth SIG, Inc.

Contents

Chapter 1 Standard Libraries 1
1.1 Basic Library Functions 1

1.1.1 Coroutine Sub-Library 1
1.2Module Library 1
1.3 String Library 1
1.4 Table Library 2
1.5Math Library 2
1.6 Unimplemented Libraries and Functions 2

Chapter 2 Touch Library 3
2.1 Overview 3

2.1.1 On-Screen Keyboard and Screen Resize Behavior 3
2.1.2 Event Handling 3

2.2 Library Functions 4
2.2.1 ppi 4
2.2.2 xppi 4
2.2.3 yppi 4
2.2.4 enabled 4
2.2.5 isKeyboardAvailable 5
2.2.6 isKeyboardVisible 5
2.2.7 showKeyboard 5

Chapter 3 2D Editor Library 6
3.1 newRichText 6
3.2 createChemBox 6
3.3 createMathBox 7
3.4 getExpression 7
3.5 getExpressionSelection 7
3.6 getText 7
3.7 hasFocus 8
3.8 isVisible 8
3.9move 8
3.10 registerFilter 8
3.11 resize 9
3.12 setBorder 9
3.13 setBorderColor 9
3.14 setColorable 9
3.15 setDisable2DinRT 9
3.16 setExpression 9
3.17 setFocus 10
3.18 setFontSize 10
3.19 setMainFont 10
3.20 setReadOnly 11
3.21 setSelectable 11
3.22 setSizeChangeListener 11

ii

iii

3.23 setText 11
3.24 setTextChangeListener 12
3.25 setTextColor 12
3.26 setVisible 12
3.27 setWordWrapWidth 12

Chapter 4 Class Library 13
4.1 class 13

Chapter 5 Clipboard Library 14
5.1 addText 14
5.2 getText 14

Chapter 6 Cursor Library 15
6.1 set 15
6.2 hide 17
6.3 show 17

Chapter 7 Document Library 18
7.1markChanged 18

Chapter 8 Event Handling 19
8.1 activate 20
8.2 arrowDown 20
8.3 arrowKey 20
8.4 arrowLeft 21
8.5 arrowRight 21
8.6 arrowUp 21
8.7 charIn 21
8.8 backspaceKey 21
8.9 backTabKey 21
8.10 clearKey 22
8.11 construction 22
8.12 contextMenu 22
8.13 copy 22
8.14 create 22
8.15 createMathBox 22
8.16 cut 23
8.17 deactivate 23
8.18 deleteKey 23
8.19 destroy 23
8.20 enterKey 23
8.21 escapeKey 23
8.22 getFocus 23
8.23 getSymbolList 24
8.24 grabDown 24
8.25 grabUp 24
8.26 help 24
8.27 keyboardDown 25

8.28 keyboardUp 25
8.29 loseFocus 25
8.30mouseDown 25
8.31mouseMove 25
8.32mouseUp 25
8.33 paint 26
8.34 paste 26
8.35 propertiesChanged 26
8.36 resize 26
8.37 restore 26
8.38 returnKey 27
8.39 rightMouseDown 27
8.40 rightMouseUp 27
8.41 save 27
8.42 tabKey 28
8.43 timer 28
8.44 varChange 28

Chapter 9 Graphics Library 29
9.1 clipRect 29
9.2 drawArc 29
9.3 drawImage 29
9.4 drawLine 30
9.5 drawPolyLine 30
9.6 drawRect 30
9.7 drawString 30
9.8 fillArc 30
9.9 fillPolygon 30
9.10 fillRect 31
9.11 getStringHeight 31
9.12 getStringWidth 31
9.13 setColorRGB 31
9.14 setFont 31
9.15 setPen 31

Chapter 10 Image Library 32
10.1 new 32
10.2 copy 32
10.3 height 32
10.4 rotate 32
10.5 width 33

Chapter 11 Locale Library 34
11.1 name 34

Chapter 12 Math Library Extension 35
12.1 eval 35
12.2 evalStr 36
12.3 getEvalSettings 36

iv

v

12.4 setEvalSettings 37

Chapter 13 Module Library 39

Chapter 14 Platform Library 40
14.1 apiLevel 40
14.2 hw 40
14.3 isColorDisplay 40
14.4 isDeviceModeRendering 41
14.5 isTabletModeRendering 41
14.6 registerErrorHandler 41
14.7 window 41

14.7.1 height and width 41
14.7.2 invalidate 41
14.7.3 setBackgroundColor 42
14.7.4 setFocus 42
14.7.5 getScrollHeight 42
14.7.6 setScrollHeight 42
14.7.7 displayInvalidatedRectangles 42

14.8 withGC 43
14.9 getDeviceID 43

Chapter 15 String Library Extension 44
15.1 split 44
15.2 uchar 44
15.3 usub 44
15.4 pack 44
15.5 unpack 45

Chapter 16 Timer Library 46
16.1 getMilliSecCounter 46
16.2 start 46
16.3 stop 46

Chapter 17 Tool Palette Library 47
17.1 register 47
17.2 enable 47
17.3 enableCut 48
17.4 enableCopy 48
17.5 enablePaste 48

Chapter 18 Variable Library 49
18.1 list 49
18.2makeNumericList 49
18.3monitor 49
18.4 recall 49
18.5 recallAt 50
18.6 recallStr 50
18.7 store 50

18.8 storeAt 50
18.9 unmonitor 50

Chapter 19 Physics Library 51
19.1Miscellaneous routines 51

19.1.1 INFINITY 51
19.1.2momentForBox 51
19.1.3momentForCircle 51
19.1.4momentForPoly 52
19.1.5momentForSegment 52

19.2 Vectors 52
19.2.1 Vect 52
19.2.2 add 53
19.2.3 clamp 53
19.2.4 cross 53
19.2.5 dist 54
19.2.6 distsq 54
19.2.7 dot 54
19.2.8 eql 54
19.2.9 length 55
19.2.10 lengthsq 55
19.2.11 lerp 55
19.2.12 lerpconst 55
19.2.13mult 56
19.2.14 near 56
19.2.15 neg 56
19.2.16 normalize 56
19.2.17 normalizeSafe 57
19.2.18 perp 57
19.2.19 project 57
19.2.20 rotate 57
19.2.21 rperp 58
19.2.22 setx 58
19.2.23 sety 58
19.2.24 slerp 58
19.2.25 slerpconst 59
19.2.26 sub 59
19.2.27 toangle 59
19.2.28 unrotate 60
19.2.29 x 60
19.2.30 y 60

19.3 Bounding Boxes 60
19.3.1 BB 60
19.3.2 b 61
19.3.3 clampVect 61
19.3.4 containsBB 61
19.3.5 containsVect 61
19.3.6 expand 62
19.3.7 intersects 62

vi

vii

19.3.8 l 62
19.3.9merge 62
19.3.10 setb 62
19.3.11 r 63
19.3.12 setl 63
19.3.13 setr 63
19.3.14 sett 63
19.3.15 t 64
19.3.16wrapVect 64

19.4 Bodies 64
19.4.1 Body 64
19.4.2 activate 64
19.4.3 angle 65
19.4.4 angVel 65
19.4.5 applyForce 65
19.4.6 applyImpulse 65
19.4.7 data 66
19.4.8 force 66
19.4.9 isRogue 66
19.4.10 isSleeping 66
19.4.11 local2World 67
19.4.12 kineticEnergy 67
19.4.13mass 67
19.4.14moment 67
19.4.15 pos 68
19.4.16 resetForces 68
19.4.17 rot 68
19.4.18 setAngle 68
19.4.19 setAngVel 69
19.4.20 setData 69
19.4.21 setForce 69
19.4.22 setMass 69
19.4.23 setMoment 70
19.4.24 setPos 70
19.4.25 setPositionFunc 70
19.4.26 setTorque 71
19.4.27 setVel 71
19.4.28 setVelocityFunc 71
19.4.29 setVLimit 72
19.4.30 setWLimit 72
19.4.31 sleep 72
19.4.32 sleepWithGroup 73
19.4.33 torque 73
19.4.34 updatePosition 73
19.4.35 updateVelocity 73
19.4.36 vel 74
19.4.37 vLimit 74
19.4.38wLimit 74

19.4.39world2Local 74
19.5 Shapes 75

19.5.1 BB 75
19.5.2 body 75
19.5.3 collisionType 75
19.5.4 data 75
19.5.5 friction 76
19.5.6 group 76
19.5.7 layers 76
19.5.8 rawBB 76
19.5.9 restitution 77
19.5.10 sensor 77
19.5.11 setCollisionType 77
19.5.12 setData 77
19.5.13 setFriction 78
19.5.14 setGroup 78
19.5.15 setLayers 78
19.5.16 setRestitution 78
19.5.17 setSensor 79
19.5.18 setSurfaceV 79
19.5.19 surfaceV 79

19.6 Circle Shapes 79
19.6.1 CircleShape 80
19.6.2 offset 80
19.6.3 radius 80

19.7 Polygon Shapes 80
19.7.1 PolyShape 80
19.7.2 numVerts 81
19.7.3 points 81
19.7.4 vert 81

19.8 Segment Shapes 81
19.8.1 SegmentShape 82
19.8.2 a 82
19.8.3 b 82
19.8.4 normal 82
19.8.5 radius 83

19.9 Spaces 83
19.9.1 Space 83
19.9.2 addBody 83
19.9.3 addConstraint 83
19.9.4 addCollisionHandler 84
19.9.5 addPostStepCallback 84
19.9.6 addShape 85
19.9.7 addStaticShape 85
19.9.8 damping 85
19.9.9 data 85
19.9.10 elasticIterations 85
19.9.11 gravity 86

viii

ix

19.9.12 idleSpeedThreshold 86
19.9.13 iterations 86
19.9.14 rehashShape 86
19.9.15 rehashStatic 87
19.9.16 removeBody 87
19.9.17 removeConstraint 87
19.9.18 removeShape 87
19.9.19 removeStaticShape 88
19.9.20 resizeActiveHash 88
19.9.21 resizeStaticHash 88
19.9.22 setDamping 88
19.9.23 setData 89
19.9.24 setElasticIterations 89
19.9.25 setGravity 89
19.9.26 setIdleSpeedThreshold 89
19.9.27 setIterations 90
19.9.28 setSleepTimeThreshold 90
19.9.29 sleepTimeThreshold 90
19.9.30 step 91

19.10 Constraints 91
19.10.1 Damped Rotary Spring 91
19.10.2 Damped Spring 92
19.10.3 Gear Joint 92
19.10.4 Groove Joint 93
19.10.5 Pin Joint 93
19.10.6 Pivot Joint 93
19.10.7 Ratchet Joint 94
19.10.8 Rotary Limit Joint 94
19.10.9 SimpleMotor 95
19.10.10 Slide Joints 95

19.11 Arbiters and Collision Pairs 95
19.11.1 # 96
19.11.2 a 96
19.11.3 b 96
19.11.4 bodies 96
19.11.5 depth 96
19.11.6 elasticity 97
19.11.7 friction 97
19.11.8 impulse 97
19.11.9 isFirstContact 97
19.11.10 normal 98
19.11.11 point 98
19.11.12 setElasticity 98
19.11.13 setFriction 98
19.11.14 shapes 99
19.11.15 totalImpulse 99
19.11.16 totalImpulseWithFriction 99

19.12 Shape Queries 99

19.12.1 pointQuery 99
19.12.2 segmentQuery 100

19.13 Space Queries 100
19.13.1 pointQuery 100
19.13.2 pointQueryFirst 100
19.13.3 segmentQuery 101
19.13.4 segmentQueryFirst 101

19.14 SegmentQueryInfo 101
19.14.1 hitDist 102
19.14.2 hitPoint 102

Chapter 20 Bluetooth® Smart Library 103
20.1 Bluetooth® LE 103

20.1.1 addStateListener 103
20.1.2 removeStateListener 104
20.1.3 pack 104
20.1.4 unpack 104
20.1.5 Format Specifier for pack and unpack 104

20.2 Bluetooth® LE Central 105
20.2.1 startScanning 105
20.2.2 stopScanning 106
20.2.3 isScanning 107

20.3 Peripheral Class 107
20.3.1 getName 107
20.3.2 getState 107
20.3.3 connect 108
20.3.4 disconnect 109
20.3.5 discoverServices 109
20.3.6 getServices 110

20.4 Service Class 110
20.4.1 getUUID 110
20.4.2 discoverCharacteristics 110
20.4.3 getCharacteristics 111

20.5 Characteristic Class 111
20.5.1 getUUID 111
20.5.2 setValueUpdateListener 111
20.5.3 setWriteCompleteListener 112
20.5.4 read 112
20.5.5 setNotify 113
20.5.6 getValue 113
20.5.7 write 113

Chapter 21 Asynchronous Serial Interface 114
21.1 require 'asi' 114
21.2 addStateListener 114
21.3 removeStateListener 115
21.4 isScanning 115
21.5 startScanning 115
21.6 stopScanning 116

x

xi

21.7 Port Class 116
21.7.1 getName 116
21.7.2 getIdentifier 116
21.7.3 getState 116
21.7.4 setBaudRate 117
21.7.5 connect 117
21.7.6 disconnect 118
21.7.7 setWriteListener 118
21.7.8 write 119
21.7.9 setReadListener 119
21.7.10 setReadTimeout 120
21.7.11 read 120
21.7.12 getValue 120

Appendix A Script Compatibility 121
A.1 Backward and Forward Compatibility 121

A.1.1 Document Compatibility 121
A.1.2 Scripting Compatibility 121

A.2 Creating Scripts for a Future Software Release 122
A.3 Platform Compatibility 122

Appendix B Deprecated API Functions and API Behavior 123
B.1 Image Library 123
B.2 Platform Library 123

B.2.1 gc 123
B.3 Platform Library 124

B.3.1 drawString Vertical Alignment 124
B.4 Requested API Level 124

Index 125

List of Tables

Table 2.1: Gesture to event handler mapping 3

Table 3.1: 2D editor markup language 6

Table 20.1: Format specifier for pack and unpack 105

Table A.1: Mapping between API level and TI-Nspire™ software version 122

Table A.2: Overview about platform incompatibilities 122

i

Listings

Listing 3.1: Default Values of a new 2D Rich Text Editor 6

Listing 3.2: Example 1 for getExpressionSelection() 7

Listing 3.3: Example 2 for getExpressionSelection() 7

Listing 3.4: Example for D2Editor:registerFilter() 8

Listing 3.5: Example 1 for D2Editor:setExpression 10

Listing 3.6: Example 2 for D2Editor:setExpression 10

Listing 4.1: Class Library Example 13

Listing 8.1: Event Handler Example 19

Listing 8.2: Example for getSymbolList 24

Listing 12.1: Converting a Lua Number to a String to be Used in math.eval() (E Notation) 35

Listing 12.2: math.evalStr() Returning Result in E Notation 36

Listing 12.3: math.evalStr() Returning Negative Numbers 36

Listing 12.4: TI-Nspire™ Software Default Settings Returned by getEvalSettings 37

Listing 12.5: Calling math.setEvalSettings() using a table with names 37

Listing 12.6: Calling math.setEvalSettings() using a table with ordinal number 37

Listing 12.7: Calling math.setEvalSettings() using a table with combined names and numbers 37

Listing 14.1: Example of Using withGC() to get the Pixel Length and Height of a String 43

Listing 15.1: Examples for string.usub() 44

Listing 15.2: Example Showing the use of string.pack() 45

Listing 15.3: Concatenation of Multiple calls to string.pack() 45

Listing 15.4: Example Showing the use of string.unpack() 45

Listing 15.5: Splitting Unpacking into Multiple calls to string.unpack() 45

Listing 17.1: Registering a Tool Palette 47

Listing 18.1: Example for Accessing aMatrix via the Variable Library 49

Listing 19.1: Spherical Linear Interpolation Example 59

Listing 19.2: Example for physics.Body:setVelocityFunc() 71

Listing 19.3: The Form of the Callback Table for physics.Space:addCollisionHandler() 84

ii

iii

Listing A.1: Authoring for a Future Software Release for the Example of Touch 122

Listing B.1: Use of the static GC in platform.apiLevel = '1.0' 123

List of Figures

Figure 8.1: Open Document Sequence Chart 20

Figure 20.1: Bluetooth® LE Scanning Procedure 107

iv

Chapter 1

Standard Libraries

The TI-Nspire™ software integrates most Lua standard libraries that come with the Lua distribution. This chapter provides an
overview about the supported Lua library functions as well as restrictions to these functions.

See the (Lua 5.1 Reference Manual) for definitions and details of the standard functions.

1.1 Basic Library Functions
For further details, please follow this link to the “Basic Functions” section in the Lua 5.1 Reference Manual.

assurt collectgarbage error _G getfenv getmetatable

ipairs load1 loadstring1 next pairs pcall

print2 rawequal rawget rawset select setfenv

setmetatable tonumber tostring type unpack _VERSION

xpcall

1.1.1 Coroutine Sub-Library
For further details, please follow this link to the “Coroutine Manipulation” section in the Lua 5.1 Reference Manual. The
following functions are defined inside the coroutine table. Heavy use of coroutines might be difficult to debug inside the TI-
Nspire™ Editor.

create resume running status wrap yeild

1

2

1.2 Module Library
The implementation of this module is very limited. Please consult the Module Library chapter for more details.

1.3 String Library
For further details, please follow this link to the “String Manipulation” section in the Lua 5.1 Reference Manual.

String routines lower and upper are not tailored to the current locale. The conversion of strings to upper and lower case letters
operates only on the 26 letters of the Latin alphabet. This restriction also applies to the alphabetic matching patterns (%a, %l,
%u, and %w) employed by the find, gmatch, andmatch functions.

byte char dump find format gmatch gsub len

lower match rep reverse sub upper

1Please be cautious with the use of load and loadstring. Lua source code loaded by the use of these functions is not supported
in the TI-Nspire™ Editor. This source code cannot be debugged and error messages resulting from functions loaded using load
and loadstring might cause confusing results.
2The output from the print function is directed into the console of the TI-Nspire™ Editor only. On any platform where the TI-
Nspire™ Editor is not included calls to the print function are ignored.

Chapter 1 Standard Libraries 1

http://www.lua.org/manual/5.1/manual.html#5
http://www.lua.org/manual/5.1/manual.html#5.1
http://www.lua.org/manual/5.1/manual.html#5.2
http://www.lua.org/manual/5.1/manual.html#5.4

2 Chapter 1 Standard Libraries

1.4 Table Library
For further details, please follow this link to the “Table Manipulation” section in the Lua 5.1 Reference Manual.

concat insert maxn remove sort

1.5 Math Library
For further details, please follow this link to the “Mathematical Functions” section in the Lua 5.1 Reference Manual. The
following functions are defined inside the math table. Infinite and undefined results will convert to the appropriate TI-Nspire™
representations and cooperate with the TI-Nspire™ math extensions. The reverse conversion of string representation (infinite
and undefined) to numerical representation is not supported.

abs acos asin atan atan2 ceil cos cosh

deg exp floor fmod frexp huge ldexp log

log10 max min modf pi pow rad random

randomseed sin sinh sqrt tan tanh

1.6 Unimplemented Libraries and Functions
The following standard Lua libraries are not available in the TI-Nspire™ software:

file io os debug

The following standard functions and standard table entries are not available in the TI-Nspire™
software:

dofile loadfile module package.cpath package.loadlib

package.path package.seeall

http://www.lua.org/manual/5.1/manual.html#5.5
http://www.lua.org/manual/5.1/manual.html#5.6

Chapter 2

Touch Library

The touch library is added to the TI-Nspire™ platform with platform.apiLevel = '2.2'. It is visible on all platforms but may ignore
calls to its functions if the platform running the script does not support touch.

The touch library offers a low-level interface, which enables script authors to develop scripts that run on all platforms equally.
It also places the effort on the script writer to design and test the script for all different platforms if platform compatibility is
desired.

2.1 Overview
The following will give an overview about system features and behavior that script authors need to be aware of to write
successful scripts for touch platforms and scripts working well across all TI-Nspire™ platforms.

2.1.1 On-Screen Keyboard and Screen Resize Behavior
The TI-Nspire™ software features two keyboards — ABC and Function keyboard. The user can switch between both keyboards.
The default keyboard for the scripting environment is the ABC keyboard.

There are different keyboard modes that might be supported on each touch platform — docked, undocked, and split keyboard.
In any mode, no resize event will be sent to the script. If the keyboard is docked, the TI-Nspire™ platform will allow the user to
pan the screen allowing access to content behind the keyboard - see setScrollHeight() for controlling scrolling by the script
while a docked keyboard is onscreen. The new on.keyboardUp() event handler supports the script with the overlapping height
of the on-screen keyboard.

Touch platforms usually support undocked and split on-screen keyboards to be panned; therefore, panning of the script is not
needed.

2.1.2 Event Handling
All event handling is described Chapter 8. There is no change for touch platforms in Introduced in platform.apiLevel = '2.2'
except for two new handlers, on-screen keyboard up and down detection --- see on.keyboardUp(keyboardOverlapHeight) and
on.keyboardDown() event handler.

Please see Table 2.1 for the mapping between touch gestures and the existing event handlers.

Table 2.1: Gesture to event handler mapping

Gesture "on" handler Comment
Single Tap on.mouseDown()

on.mouseUp()
It should be noted that the gesture recognizer adds a small
delay between lifting the finger from the screen and
sending the mouseUp event.

Double Tap on.mouseDown()
on.mouseUp()
on.mouseDown()
on.mouseUp()

Likewise due to the gesture recognizer the first mouseUp is
received after the second tap is complete. The following
down and up are send immediately.

Pan on.mouseDown()
on.mouseMove()'s
...
on.mouseUp()

Same behavior as on a desktop platform when pressing the
mouse button, dragging the mouse and releasing the mouse
button again. When running on a non-touch platform,
on.mouseMove() can be received while the mouse button
is not pressed.

Chapter 2 Touch Library 3

4 Chapter 2 Touch Library

Long Press Move on.mouseDown()
on.mouseMove()'s
on.mouseUp()

Same behavior as pan. There is no differentiation possible
from the script

Other Gestures on.mouseDown()
[on.mouseMove()'s]
on.mouseUp()

Will reliably generate a on.mouseDown() and on.mouseUp
() event. One or multiple on.mouseMove() might be send.
Multi-finger gestures will report coordinates below or
between the fingers.

Note: The behavior of the mapping described in Table 2.1 is slightly different for mouse handler registered with
D2Editor:registerFilter(). In case of single and double tap will the first on.mouseDown() event be received after the gesture
is fully recognized and the finger lifted up from the screen. Similar is true for the pan and long press gesture. The
on.mouseDown() event is send when either the finger starts moving or the stays without moving for a particular time.

Another important aspect related to event handling is the return value of an event handler. The main use case in
platform.apiLevel = '2.0' for event handler return values has been lter event handler registered for a 2D Editor - see
D2Editor:registerFilter(). Every event handler may return a boolean to indicate if the event has been handled (true) or ignored
(false). If an event handler does not return explicitly a value, the value will default to true. In the context of touch and on-
screen keyboard, the return value of mouseDownwhile the keyboard is up plays an important role and can disturb the user
experience when used incorrectly. While the keyboard is up, the user can pan the screen to see content behind the keyboard. If
mouseDown returns true, or has no explicit return statement, the user will be prevented from panning the screen.

2.2 Library Functions
2.2.1 ppi

touch.ppi()

Returns pixels per inches along the diagonal of the screen. This function is useful to determine the touch target size of
touchable objects on the screen.

Introduced in platform.apiLevel = '2.2'

2.2.2 xppi

touch.xppi()

Returns pixels per inches along the x-axis of the screen. This function is useful to determine the touch target size of touchable
objects on the screen.

Introduced in platform.apiLevel = '2.2'

2.2.3 yppi

touch.yppi()

Returns pixels per inches along the y-axis of the screen. This function is useful to determine the touch target size of touchable
objects on the screen.

Introduced in platform.apiLevel = '2.2'

2.2.4 enabled

touch.enabled()

Returns true if the platform supports touch, otherwise false. If touch is supported, it is recommended to use the ppi values to
calculate touch target sizes.

Introduced in platform.apiLevel = '2.2'

2.2.5 isKeyboardAvailable

touch.isKeyboardAvailable()

Returns true if an on-screen keyboard is available on the platform, otherwise false.

Introduced in platform.apiLevel = '2.2'

2.2.6 isKeyboardVisible

touch.isKeyboardVisible()

Returns true if any keyboard is visible (docked, undocked, and split keyboards).

Introduced in platform.apiLevel = '2.2'

2.2.7 showKeyboard

touch.showKeyboard(boolean)

Causes the docked ABC keyboard to appear on the screen if no keyboard is currently visible. Default is true.

Introduced in platform.apiLevel = '2.2'

Chapter 2 Touch Library 5

Chapter 3

2D Editor Library

The Lua 2D editor bindings enable 2D rich text editors to be created and manipulated within the
TI-Nspire™ product. 2D rich text editors are created using newRichText().
Script authors should be aware that rich text editors may embed annotations in proprietary markup language. Such markup
could be embedded from the script by calling createMathBox() or createChemBox().
Users of the script application may also be able to copy and paste text with other markup information from other TI-Nspire™
applications like Notes. Some information about the markup language used inside the 2D editor is shown in Table 3.1 .

Table 3.1: 2D editor markup language

Description Markup Comment
Math Box “\0el {...}” Contains a 2D formula.

Evaluated
Math Box
expressions

“\0el {...} >’
\0el {...}”

A pair of Math Boxes — formula and eval-
uated result.

Chem Box “\0chem
{...}”

Describes a chemical formula.

Other “\1 ...\” It is not recommended to utilize this type
in scripts as the used markup may change
in future releases. But it is recommended that scripts will gracefully handle
this type of markup without Lua error.

3.1 newRichText
D2Editor.newRichText()

Creates and returns a new 2D rich text editor. Default values are illustrated in Listing 3.4 .

Note

The program must resize the 2D editor before the text editor widget is painted the first time.

Listing 3.1: Default Values of a new 2D Rich Text Editor

editor:move(0, 0)
:setBorder(0)
:setBorderColor(0x000000)
:setColorable(false)
:setDisable2DinRT(false)
:setFontSize(<default system size>)
:setMainFont(<default system font>)
:setReadOnly(false)
:setSelectable(true)
:setTextColor(0x000000)
:setVisible(true)

Introduced in platform.apiLevel = '1.0'

3.2 createChemBox
D2Editor:createChemBox()

Chapter 3 2D Editor Library 6

7 Chapter 3 2D Editor Library

Inserts a Chem Box in the current cursor position of the editor. Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.3 createMathBox
D2Editor:createMathBox()

Inserts a Math Box (Expression Box) in the current cursor position of the editor. Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.4 getExpression
D2Editor:getExpression()

Returns the contents of the text editor as a UTF-8 encoded string.

Introduced in platform.apiLevel = '2.0'

3.5 getExpressionSelection
D2Editor:getExpressionSelection()

Returns three values: the contents of the text editor as a UTF-8 encoded string, the cursor position as an integer, and the
selection start as an integer.

Usage

Cursor and selection positions are the borders between characters, not the position of the characters. The following code
snippets serve as examples.

Listing 3.2: Example 1 for getExpressionSelection()

str = 'This is a test string to see it working.'
d2e, error = D2Editor.newRichText():resize(100, 100)
result, error = d2e:setText(str, 16, 28)
str, pos, sel, error =
d2e:getExpressionSelection()

-- The getExpressionSelection() are results are:
str = 'This is a test string to see it working.'
pos = 16 -- (right before the 's' in "string")
sel = 28 -- (between the two e's in "see")

Listing 3.3: Example 2 for getExpressionSelection()

str = 'This is a test string to see it working.'
d2e, error = D2Editor.newRichText():resize(100, 100)
result, error = d2e:setText(str, 28, 16)
str, pos, sel, error = d2e:getExpressionSelection()

-- The getExpressionSelection() are results are:
str = 'This is a test string to see it working.'
pos = 28 -- (between the two e's in "see")
sel = 16 -- (right before the 's' in "string")

Introduced in platform.apiLevel = '2.0'

3.6 getText
D2Editor:getText()

Returns the contents of the text editor as a UTF-8 encoded string.

Introduced in platform.apiLevel = '1.0'

3.7 hasFocus
D2Editor:hasFocus()

Returns true if the editor has focus; otherwise returns false.

Introduced in platform.apiLevel = '2.0'

3.8 isVisible
D2Editor:isVisible()

Returns true if the editor is visible; otherwise returns false.

Introduced in platform.apiLevel = '2.0'

3.9 move
D2Editor:move(x, y)

Sets the parent-relative location of the upper-left corner of the text editor. Both x and y must be between -32767 and 32767.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

3.10 registerFilter
D2Editor:registerFilter(handlerTable)

This routine registers a table of handler functions that can filter events before they are sent to the
2D editor widget, or unregisters if nil is passed.

Returns the text editor object.

The handlerTable is a table of event handler functions. Any event described in the section on
Event Handling can be filtered by a function in the handler table.

In the example code below, if the user presses Tab in the text editor ed, the tabKey filter function moves the focus to text
editor ed2. Events charIn and arrowKey simply report which key was pressed and then allow the event to pass on through to
the text editor.

Listing 3.4: Example for D2Editor:registerFilter()

-- Create an editor
ed = D2Editor.newRichText()

-- Register filters for events
ed:registerFilter {
 tabKey = function()
 ed2:setFocus()

return true
 end,
 charIn = function(ch)

 print(ch)
return false

 end,
 arrowKey = function(key)

Chapter 3 2D Editor Library 8

9 Chapter 3 2D Editor Library

 print(key)
return false

 end
}

Introduced in platform.apiLevel = '2.0'

3.11 resize
D2Editor:resize(width, height)

Changes the width and height of the text editor. Both width and heightmust be > 0 and <
32768.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

3.12 setBorder
D2Editor:setBorder(thickness)

Sets the editor’s border thickness. The thickness value must be between 0 and 10. Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.13 setBorderColor
D2Editor:setBorderColor(color)

Sets the editor’s border color. The color value must be between 0 and 16777215 (0x000000 and 0xFFFFFF).

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.14 setColorable
D2Editor:setColorable(boolean)

Makes the expression colorable or uncolorable. Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.15 setDisable2DinRT
D2Editor:setDisable2DinRT(boolean)

Turns off 2D layout of math input to the text box. Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.16 setExpression
D2Editor:setExpression(text[, cursor[, selection]])

Sets the text content of the text editor. The cursor position is set to 1 (beginning of text), -1 (end of text), or a value from 1 to
the text length plus 1. Text can be selected by specifying a selection index that indicates the end of the selection. If the

selection = -1, no text is selected. If the cursor < -1 or selection < -1, an error is returned. If unspecified, both the cursor and the
selection start default to -1. Returns the text editor object.

Note

All backslashes sent to the editor must be doubled. This is in addition to the standard escape rule for special characters. As
a result, the string required to get the editor to
show home\stuff\work is “home\\\\stuff\\\\work”.

Usage

Cursor and selection positions are the borders between characters, not the character positions. The following code snippet
highlights the characters “string to se” and places the cursor before the ’s’ in “string”.

Listing 3.5: Example 1 for D2Editor:setExpression

str = 'This is a test string to see it working.'
d2e, error = D2Editor.newRichText():resize(100, 100)
result, error = d2e:setExpression(str, 16, 28)

2DEditor output: This is a test |string to see it working.

The following code snippet highlights the characters “string to se” and places the cursor before the second ’e’ in “see”.

Listing 3.6: Example 2 for D2Editor:setExpression

str = 'This is a test string to see it working.'
d2e, error = D2Editor.newRichText():resize(100, 100)
result, error = d2e:setExpression(str, 28, 16)

2DEditor output: This is a test string to se|e it working.

Introduced in platform.apiLevel = '2.0'

3.17 setFocus
D2Editor:setFocus(boolean)

Sets the user input focus on the editor if true (the default). This is usually called from the on.getFocus event handler.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.18 setFontSize
D2Editor:setFontSize(size)

Sets the text font size in the editor. The point size is restricted on the TI-Nspire™ family of handhelds. Choose one of these
sizes: 7, 9, 10, 11, 12, 16, or 24. Any font size supported by Windows® or Mac OS® can be used in the desktop software.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.19 setMainFont
D2Editor:setMainFont(family, style)
D2Editor:setMainFont(family, style [, fontSize]) -- API Level 2.3

Sets the main font family (“serif” or “sansserif”) and style (“r”, “b”, “i”, “bi”). The new font size parameter introduced in
platform.apiLevel = '2.3' is optional.

Chapter 3 2D Editor Library 10

11 Chapter 3 2D Editor Library

Style Description
r
b
i
bi

Regular
Bold
Italic
Bold and Italic

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

Extended in platform.apiLevel = ‘2.3’

3.20 setReadOnly
D2Editor:setReadOnly(boolean)

Makes the text editor content modifiable (false) or unmodifiable (true) by the user. If a Boolean value is not specified, defaults
to true.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

3.21 setSelectable
D2Editor:setSelectable(boolean)

Makes the text editor content selectable (true) or unselectable (false) by the user. If a Boolean value is not specified, defaults
to true.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

3.22 setSizeChangeListener
D2Editor:setSizeChangeListener(function(editor, w, h))

Sets the callback function for when the editor contents exceed the current editor size, when the contents fit on fewer lines, or
when the contents fit on a single line of smaller width. This function can then resize the editor appropriately. The callback
function should be a void function. It will be passed into the following parameters:

Parameter Description
editor
w
h

Editor in which the expression changed size.
Optimal widget width to t the expression.
Optimal widget height to t the expression.

Returns the text editor object.

Info

To remove the listener, call D2Editor:setSizeChangeListener(nil)

Introduced in platform.apiLevel = '2.0'

3.23 setText
D2Editor:setText(text[, cursor[, selection]])

See setExpression() for details.

Returns the text editor object.

Introduced in platform.apiLevel = '1.0'

3.24 setTextChangeListener
D2Editor:setTextChangeListener(function(editor))

Sets the callback function for when the text expression changes. This function will be passed into the editor object. This allows
for processing text input as it occurs.

Returns the text editor object.

Info

To remove the listener, call D2Editor:setTextChangeListener(nil)

Introduced in platform.apiLevel = '2.0'

3.25 setTextColor
D2Editor:setTextColor(color)

Sets the editor text color. The color value must be between 0 and 16777215 (0x000000 and 0xFFFFFF).

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.26 setVisible
D2Editor:setVisible(boolean)

Sets the visibility of the text editor. Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

3.27 setWordWrapWidth
D2Editor:setWordWrapWidth(width)

Sets the rich text editor word-wrapping width in pixels. Ignored if the editor is in 2D mode. To indicate widget width, sets to 0.
To disable wrapping, sets to < 0. The width must be -32767 to 32767.

Note

When word wrapping is disabled, that is the width is < 0, and ellipses are added to cut words, the negative value of the
width specifies the margin from the right of the widget before ellipses are used.

Returns the text editor object.

Introduced in platform.apiLevel = '2.0'

Chapter 3 2D Editor Library 12

Chapter 4

Class Library

The class library implements basic object-oriented class definitions.

4.1 class
class([parent_class])

Returns a new class. If a parent class is specified, the new class inherits the methods of the parent class.

Listing 4.1: Class Library Example

Widget = class()

function Widget:init() ... end

Button = class(Widget)

function Button:init() ... end

With these definitions, when the script calls Button(), a new Button is created. The Button:init() function is called to initialize
the button, and the newly minted Button object is returned as the function result of the call.

Class Button in this example inherits all the methods and class variables defined in class Widget.

Class Button can override any methods of its parent class.

Introduced in platform.apiLevel = '1.0'

Chapter 4 Class Library 13

Chapter 5

Clipboard Library

5.1 addText
clipboard.addText(string)

This routine adds the contents of string to the Clipboard as plain text, MIME type "text/plain".

Introduced in platform.apiLevel = '1.0'

5.2 getText
clipboard.getText()

This routine returns the contents of the Clipboard as a string of plain text. If the Clipboard does not contain any text (MIME type
"text/plain"), this routine returns nil.

Introduced in platform.apiLevel = '1.0'

Chapter 5 Clipboard Library 14

Chapter 6

Cursor Library

This cursor library controls the appearance of the mouse pointer. The visibility of the cursor can only be controlled on a
handheld.

Touch platforms do not support the concept of a mouse cursor, therefore any call to this library will be ignored on touch
platforms.

A good practice is to request the expected cursor appearance within on.activate(). Calls on the cursor library are ignored while
deactivated (after on.deactivate() is received).

6.1 set
cursor.set(cursorname)

Parameter cursorname is a string that contains the name of the cursor shape to use for the mouse pointer. It can be one of the
following strings:

Cursor
icon

Cursor name SmartClick? Usage Notes

"default",
"pointer"

N Used to show the position of the cursor.

“hand pointer” Y Used to indicate that the underlying object can be selected or activated
with a click.

“crosshair” Y Used for fine control of a selection – often used to indicate the bounds of a
rectangular region selection.

'hand open" Y Indicates that the underlying object can be grabbed.

"hand closed" N Indicates that the underlying object has been grabbed.

"drag grab" N Typically used to indicate that a pan type of operation is in progress.

“rotation” Y Indicates that the underlying object can be rotated and is also used to
indicate that the rotation operation is ongoing.

“translation” Y Indicates that the underlying object can be translated and is also used to
indicate that the translation operation is ongoing.

"dilation" Y Indicates that the underlying object can be dilated and is also used to
indicate that the dilation operation is ongoing.

“diag resize” Y Indicates that a grab at this location will initiate a diagonal resize operation.
A hand closed should be used during the resize operation.

“resize
column”

Y Indicates that a grab at this location will initiate a resize column or
horizontal resize operation. A hand closed should be used during the resize
operation.

Chapter 6 Cursor Library 15

16 Chapter 6 Cursor Library

Cursor
icon

Cursor name SmartClick? Usage Notes

“resize row” Y Indicates that a grab at this location will initiate a resize row or vertical
resize operation. A hand closed should be used during the resize operation.

“zoom in” Y Indicates that a click will result in a zoom in.

“zoom out” Y Indicates that a click will result in a zoom out.

“zoom box” Y Indicates that a click will initiate a zoom box operation.

"pencil" Y Indicates that a click will result in the next step in some kind of
construction or drawing operation.

"hide" Y Indicates that a click will hide the underlying object.

"show" N Indicates that a click will show the underlying object.

"clear" N Indicates that a click will delete the underlying object.

"animate Y Indicates that a click will animate the underlying object.

"interrogate" N

"text" N Indicates that the underlying object is text and that a click will initiate an
edit of that text.

"link select" N Used as part of a linking operation to indicate that the underlying object is
available to be linked to.

"unavailable" N The current operation is unavailable for the underlying object.

"wait busy" N Used by the system to indicate that the handheld is busy doing work.

"writing" N Deprecated.

"hollow
pointer"

Y Used when you need a SmartClick mouse pointer. Indicates that the object
under the cursor can be selected.

"arrow" N No standard usage.

"dotted arrow" Y No standard usage.

"excel plus" Y Used to indicate the location suitable for initiation of a drag to fill
operation.

"mod label" Y Deprecated.

What is SmartClick?

• SmartClick improves the user experience by making it easier to center click on an object.

How does it work?

• When the application displays a SmartClick cursor it is an indication that the next user operation will likely be a center click.
Therefore, when a SmartClick cursor is displayed, any click (button press) on the touchpad will result in a center click event
being sent to the active application. In this context the user does not have to worry about positioning the finger in the very
center of the touchpad – even clicking on the edge of the touchpad will result in a center click.

Introduced in platform.apiLevel = '1.0'

6.2 hide
cursor.hide()

This routine hides the mouse pointer on a handheld.

Note: Calls to this routine are ignored if not executed on a handheld.

Introduced in platform.apiLevel = '1.0'

6.3 show
cursor.show()

This routine makes the mouse pointer visible on a handheld.

Note: Calls to this routine are ignored if not executed on a handheld.

Introduced in platform.apiLevel = '1.0'

Chapter 6 Cursor Library 17

Chapter 7

Document Library

7.1 markChanged
document.markChanged().

This routine marks the current document as changed. The user is prompted to save the TI-Nspire™ document before closing.

Introduced in platform.apiLevel = '1.0'

Chapter 7 Document Library 18

Chapter 8

Event Handling

Script applications respond to external stimuli by implementing event handlers. All the event handlers are grouped in the “on”
module.

Example

For example, the application script implements on.paint(gc) to be notified when it is time to redraw its window. on.paint is
passed a graphics context that it can use to call drawing routines on its window.

Listing 8.1: Event Handler Example

function on.paint(gc)
gc:drawLine(...)

 :

end

Simplified Open Document Scenario

There are many scenarios that can be discussed in detail. All specifics about the behavior of particular events are discussed as
part of the event description.

However the open document scenario will be discussed here to visualize options and the order of the events received. In reality
there might be many more events involved due to painting the script in different contexts (page sorter).

Based on the API level of the script, either the routine on.construction or on.create is called. The idea of on.construction is first
to separate the definition of variables classes (done in main) from constructing the app; secondly to separate the layout from
construction (on.resize()). The main issue of on.create() is the missing ability to invalidate (subsection 14.7.2) and the mix of
creation and layout. The latter might be impacted in some cases due to the missing capability of requesting to invalidate the
screen. Another option is the call to on.restore(), which is only done when the script is saved and provided a state table (see
section 8.41). The following figure shows this visually.

In addition, it is also important to understand that a script may not have a size before the on.resize() event is received. Calling
width or height of the platform window (subsection 14.7.1) before on.resize() may return 0.

Chapter 8 Event Handling 19

20 Chapter 8 Event Handling

Figure 8.1: Open Document Sequence Chart

8.1 activate
on.activate()

This routine is called when the script application is activated. The dimensions of the drawing window cannot be initialized at
this point, so it is not a good place to create and position graphical elements if they depend on the window size.

Introduced in platform.apiLevel = '1.0'

8.2 arrowDown
on.arrowDown()

This routine is called when the user presses the down arrow key.

Introduced in platform.apiLevel = '1.0'

8.3 arrowKey
on.arrowKey(key)

This routine is called when the user presses an arrow key. The key parameter may be “up”, “down”, “left”, or “right”. This
routine is not called if the script implements a specific arrow key handler (on.arrowDown for instance) for the particular arrow
key type.

Introduced in platform.apiLevel = '1.0'

8.4 arrowLeft
on.arrowLeft()

This routine is called when the user presses the left arrow key.

Introduced in platform.apiLevel = '1.0'

8.5 arrowRight
on.arrowRight()

This routine is called when the user presses the right arrow key.

Introduced in platform.apiLevel = '1.0'

8.6 arrowUp
on.arrowUp()

This routine is called when the user presses the up arrow key.

Introduced in platform.apiLevel = '1.0'

8.7 charIn
on.charIn(char)

This routine is called when the user types a letter, digit, or other character. The parameter char is normally a one-byte string,
but because it can contain a UTF-8 encoded character, it may be two or more bytes long. It may also contain the letters of a
function name from one of the
short-cut keys, such as “sin” from the trig menu.

Introduced in platform.apiLevel = '1.0'

8.8 backspaceKey
on.backspaceKey()

This routine is called when the user presses Backspace on the desktop keyboard or the Del key on the handheld keypad.

Introduced in platform.apiLevel = '1.0'

8.9 backTabKey
on.backtabKey()

This routine is called when the user presses Shift + Tab.

Introduced in platform.apiLevel = '1.0'

Chapter 8 Event Handling 21

22 Chapter 8 Event Handling

8.10 clearKey
on.clearKey()

This routine is called when the user presses the Clear key on the handheld keypad.

Introduced in platform.apiLevel = '1.0'

8.11 construction
on.construction()

This function is guaranteed to fire first before any other event.

Introduced in platform.apiLevel = '2.0'

8.12 contextMenu
on.contextMenu()

This routine is called when the user presses the context Menu key.

Introduced in platform.apiLevel = '1.0'

8.13 copy
on.copy()

This routine is called when the user selects the Copy command either from a menu or by pressing Ctrl + C.

Note

Copy is enabled/disabled by toolpalette.enableCopy(enable).

Introduced in platform.apiLevel = '1.0'

8.14 create
on.create()

For scripts with platform.apiLevel ≥ ‘2.0’, use on.construction() instead.

This routine is called after resize and before paint when the script application is created. The window size and graphics context
are valid at this point. The on.paint event handler will be called soon after this routine finishes.

It is best to think of this function as an initialization method that fires once automatically.

Introduced in platform.apiLevel = '2.0'

8.15 createMathBox
on.createMathBox()

This routine is called when the the user presses Ctrl + M or inserts a Math Box (Expression Box). The implementation for this
callback should call the corresponding 2D editor to insert a math box if applicable.

Introduced in platform.apiLevel = '2.0'

8.16 cut
on.cut()

This routine is called when the user selects the Cut command either from a menu or by pressing Ctrl + X.

Note

Cut is enabled/disabled by toolpalette.enableCut(enable).

Introduced in platform.apiLevel = '1.0'

8.17 deactivate
on.deactivate()

This routine is called when the script is deactivated. This happens when the user moves the focus to another page or to
another application on the same page.

Introduced in platform.apiLevel = '1.0'

8.18 deleteKey
on.deleteKey()

This routine is called when the user presses the Delete key on the desktop keyboard. This is not the Del key on the handheld
keypad.

Introduced in platform.apiLevel = '1.0'

8.19 destroy
on.destroy()

This routine is called just before the script application is deleted. A script app is deleted when it is cut to the Clipboard and
when the document that contains it is closed.

Introduced in platform.apiLevel = '1.0'

8.20 enterKey
on.enterKey()

This routine is called when the user presses the Enter key.

Introduced in platform.apiLevel = '1.0'

8.21 escapeKey
on.escapeKey()

This routine is called when the user presses the Esc key.

Introduced in platform.apiLevel = '1.0'

8.22 getFocus
on.getFocus()

Chapter 8 Event Handling 23

24 Chapter 8 Event Handling

This routine is called when the script receives user input focus.

Introduced in platform.apiLevel = '2.0'

8.23 getSymbolList
on.getSymbolList()

This routine is called when the script app symbol list is being serialized to the Clipboard. The script app returns a list of names
of variables in the symbol table that it needs to copy with it to the Clipboard. The TI-Nspire™ software copies the names and
values of the variables along with the script app. Then when the user pastes the script app in another problem, the system
adds the companion variables to the problem symbol table.

As a remark, on.getSymbolList() is called when a page containing a script app is copied, but not when a problem containing a
script app is copied. This is because the entire symbol table is copied when the problem is copied.

For example, the following function indicates that it needs variable f1 to be copied with the app to the Clipboard. The value of
f1 will be added to the symbol table when it is pasted into another problem even in another TNS document.

Listing 8.2: Example for getSymbolList

function on.getSymbolList()
 return {"f1"}
end

Introduced in platform.apiLevel = '2.0'

8.24 grabDown
on.grabDown(x, y)

This routine is called in these situations:

• When the user presses and holds the Select key on a handheld

• When the user presses Ctrl + Select on a handheld

• When the user presses the middle mouse button over an active card on the desktop

x & y are always zero

The grabDown and grabUp events prevent the generation of a mouseUp event in all cases. They will be preceded by a
mouseDown event when generated by pressing and holding the Select key on a device.

Introduced in platform.apiLevel = '1.0'

8.25 grabUp
on.grabUp(x, y)

This routine is called when the mouse button is released while grab is in effect.

x & y are always zero

Introduced in platform.apiLevel = '1.0'

8.26 help
on.help()

This routine is called when the user presses the Help key. On the desktop, the Help key is Ctrl + Shift + ?. On the handheld, it is
Ctrl + ?, the control key over the Trig button.

Introduced in platform.apiLevel = '1.0'

8.27 keyboardDown
on.keyboardDown()

This routine is only called on touch-enabled platforms. It indicates that any docked keyboard has been hidden by the user or the
script by calling touch.keyboardShow(false)

Introduced in platform.apiLevel = '2.2'

8.28 keyboardUp
on.keyboardUp(keyboardOverlapHeight)

This routine is only called on touch-enabled platforms. It indicates that a docked keyboard opened on the screen and may
overlap the script content. The parameter keyboardOverlapHeight provides the height if an overlap occurs. The return value of
this routine controls if user scrolling should be enabled via the pan gesture. If returning true user scrolling is enabled otherwise
(false) scrolling needs to be implemented by the script in terms of alternating the content drawn by on.paint(). The default
value is true.

Introduced in platform.apiLevel = '2.2'

8.29 loseFocus
on.loseFocus()

This routine is called when the script loses user input focus.

Introduced in platform.apiLevel = '2.0'

8.30 mouseDown
on.mouseDown(x, y)

This routine is called when the user clicks the mouse. x and y are in window-relative pixel coordinates.

Note

This event will NOT be generated if the right mouse button is being held down.

Introduced in platform.apiLevel = '1.0'

8.31 mouseMove
on.mouseMove(x, y)

This routine is called when the user moves the mouse pointer. The mouse button does not have to be pressed to receive these
events.

Introduced in platform.apiLevel = '1.0'

8.32 mouseUp
on.mouseUp(x, y)

This routine is called when the user releases the mouse button.

Note

This event will NOT be generated in the following cases:

• The preceding mouseDown event was blocked because the right mouse button was down already.

Chapter 8 Event Handling 25

26 Chapter 8 Event Handling

• The preceding mouseDown event was not handled.

Introduced in platform.apiLevel = '1.0'

8.33 paint
on.paint(gc, x, y, width, height)

This routine is called when the script application window needs to be painted. The gc graphics context is used in the script code
to draw on the window. Additionally it provides the rectangle to be painted. Usually the provided rectangle will match the one
provided to invalidate() (subsection 14.7.2) however the system might merge multiple consecutive calls to invalidate in one
single paint rectangle. This merge optimization varies based on platform and screen resolution.

Introduced in platform.apiLevel = '1.0'

Extended in platform.apiLevel = ‘2.4’

8.34 paste
on.paste()

This routine is called when the user selects the Paste command either from a menu or by pressing
Ctrl + V.

Note

Paste is enabled/disabled by toolpalette.enablePaste(enable).

Introduced in platform.apiLevel = '1.0'

8.35 propertiesChanged
on.propertiesChanged(propertiesTable)

This routine is called on property changes. Currently all property changes are propagated as unsolicited events. Future API level
may require registration for certain properties.

Property Data Format Description
’locale’ language code,

same as
locale.name()

Provides the language selected if changed by the user (only supported on
the family of handhelds)

Introduced in platform.apiLevel = '2.2'

8.36 resize
on.resize(width, height)

This routine is called when the script application window changes size. This is a good place to initialize (or relayout) graphical
objects based on the window size.

Introduced in platform.apiLevel = '1.0'

8.37 restore
on.restore(state)

This routine is called when the script application is restored from its saved state in a document or when the app is pasted into
a document. It is called only if the state was saved with the application when it was previously copied to the Clipboard or saved
in a document. See the on.save handler.
The parameter state is the table that the on.save event handler returned.

Warning

Functionality that is not available during initialization is also not usable within on.restore. Among the functions that cannot
be called are math.eval and platform.isDeviceModeRendering.

Introduced in platform.apiLevel = '1.0'

8.38 returnKey
on.returnKey()

This routine is called when the user presses the Return key on the handheld keypad.

Introduced in platform.apiLevel = '1.0'

8.39 rightMouseDown
on.rightMouseDown(x, y)

This routine is called when the user clicks the right mouse button. x and y are in window-relative pixel coordinates.

Note

Only available on the desktop version.

Mouse events are exclusive, which means that a rightMouseDown event cannot occur while the left mouse button is being
held down and vice versa.

Introduced in platform.apiLevel = '1.0'

8.40 rightMouseUp
on.rightMouseUp(x, y)

This routine is called when the user releases the right mouse button.

Note

Only available on the desktop version.

This event will NOT be generated in the following cases:

• The preceding rightMouseDown event was blocked because the left mouse button was already down.

• The preceding rightMouseDown event was not handled.

Introduced in platform.apiLevel = '1.0'

8.41 save
on.save()

This routine is called when the script app is saved to the document or copied to the Clipboard. The script should return a table
of data needed to properly restore when the on.restore event handler is called.

Introduced in platform.apiLevel = '1.0'

Chapter 8 Event Handling 27

28 Chapter 8 Event Handling

8.42 tabKey
on.tabKey()

This routine is called when the user presses the Tab key.

Introduced in platform.apiLevel = '1.0'

8.43 timer
on.timer()

If the script application implements on.timer, the system calls this routine each time the timer ticks.

Introduced in platform.apiLevel = '1.0'

8.44 varChange
on.varChange(varlist)

This routine is called when a monitored variable is changed by another application. The varlist is a list of variable names
whose values were changed. This handler must return a value to indicate if it accepts the new value(s) or vetoes the change.

Valid return values are:

Value Brief
Description

Comment

0 Success The script application accepts the change.

-1 Veto range The new value is unsatisfactory because it is outside the acceptable range, which is
too low or too high.

-2 Veto type The new value is unsatisfactory because its type cannot be used by the script
application.

-3 Veto
existence

Another application deleted the variable, and this application needs it.

Introduced in platform.apiLevel = '1.0'

Chapter 9

Graphics Library

A graphics context is a module that has a handle to the script’s graphics output window and a library of graphics routines that
are used to draw on the window. A graphics context is supplied to the script on.paint event handler each time the window
needs to be redrawn.

The graphics context employs a pixel-based coordinate system with the origin in the upper left corner of the drawing window.

9.1 clipRect
gc:clipRect(op[, x, [y, [width, [height]]]])

Sets the clipping rectangle for subsequent graphics operations.

Parameter op takes one of the strings “set,” “reset,” “intersect,” or “null”.

Operation Description
reset Sets the clipping rectangle to include the entire window. The remaining parameters are

ignored and can be left out.

set Sets the clipping rectangle to the x, y coordinates with the specified width and height.
Unspecified parameters default to the system window location and size.

intersect Removed in platform.apilevel = ‘2.0’.

null Sets the clipping rectangle to empty. All subsequent graphics commands are ignored.

Typically the “set” operation is called before drawing, such as for a text string. It is important to call the “reset” operation after
drawing the last clipped graphic so that you do not leave a lingering clipping rectangle as a side effect.

Introduced in platform.apiLevel = '1.0'

9.2 drawArc
gc:drawArc(x, y, width, height, startAngle, arcAngle)

Draws an arc in the rectangle with upper left corner (x,y) and pixel width and height. Both the width and height must be ≥ 0.
The arc is drawn beginning at startAngle degrees and continues for endAngle degrees. Zero degrees points to the right, and 90
degrees points up (standard mathematical practice but worth mentioning since the y axis is inverted).

To draw a circle, the width and height must be equal in length, and the start and end angles must be 0 and 360. If the width
and height are different lengths, this routine draws an oval.

Introduced in platform.apiLevel = '1.0'

9.3 drawImage
gc:drawImage(imageHandle, x, y)

Draws an image at (x, y). The image must have been created by a previous call to image.new(...).

Introduced in platform.apiLevel = '1.0'

Chapter 9 Graphics Library 29

30 Chapter 9 Graphics Library

9.4 drawLine
gc:drawLine(x1, y1, x2, y2)

Draws a line from (x1,y1) to (x2,y2).

Introduced in platform.apiLevel = '1.0'

9.5 drawPolyLine
gc:drawPolyLine({x1, y1, x2, y2, ..., xn, yn})

Draws a series of lines connecting the (x, y) points. The polygon is not closed automatically. The first x-y coordinate pair must
be repeated at the end of the array of points to draw a closed polygon.

Introduced in platform.apiLevel = '1.0'

9.6 drawRect
gc:drawRect(x, y, width, height)

Draws a rectangle at (x, y) with the given pixel width and height. Both width and height must be ≥ 0.

Introduced in platform.apiLevel = '1.0'

9.7 drawString
gc:drawString("text", x, y [,vertalignment])

Draws text on the window beginning at pixel location (x,y). Vertical alignment may be “baseline”, “bottom”, “middle”, or
“top”. This aligns the text in the height of the characters’ bounding rectangle.
Prior to platform.apiLevel = '2.3' “none” was used to specify unspecified alignment. The vertical alignment “none” has been
deprecated. Specifying no alignment defaults to “top” and so does “none”.

Returns the x pixel position after the text.

Introduced in platform.apiLevel = '1.0'

Extended in platform.apiLevel = ‘2.3’

9.8 fillArc
gc:fillArc(x, y, width, height, startAngle, endAngle)

Fills an arc with the preset color. Both width and height must be ≥ 0. See setColorRGB to set the fill color.

Introduced in platform.apiLevel = '1.0'

9.9 fillPolygon
gc:fillPolygon({x1, y1, x2, y2, ... xn, yn})

Fills a polygon with the preset color. The array of points bounds the polygon. To set the fill color, see setColorRGB.

Introduced in platform.apiLevel = '1.0'

9.10 fillRect
gc:fillRect(x, y, width, height)

Fills a rectangle with the preset color. Both the width and height must be ≥ 0. To set the fill color, see setColorRGB.

Introduced in platform.apiLevel = '1.0'

9.11 getStringHeight
gc:getStringHeight("text")

Returns the pixel height of the text. The pixel height is determined by the font setting previously set by a call to setFont.

Introduced in platform.apiLevel = '1.0'

9.12 getStringWidth
gc:getStringWidth("text")

Returns the pixel width of text. The pixel width is calculated using the font setting previously set by a call to setFont.

Introduced in platform.apiLevel = '1.0'

9.13 setColorRGB
gc:setColorRGB(red, green, blue)
gc:setColorRGB(0xRRGGBB) -- API Level > '1.0'

Sets the color for subsequent draw and fill routines. The red, green, and blue components of the color are values in the range
of 0 to 255. Black is 0,0,0 and white is 255,255,255. Alternately, a single value can be passed in. The components of this single
value are blue + 255 * (green + 255
* red).

Introduced in platform.apiLevel = '1.0'

Extended in platform.apiLevel = ‘2.0’

9.14 setFont
gc:setFont(family, style, size)

Sets the font for drawing text and measuring text size. Family may be “sansserif” or “serif”. Style may be “r” for regular, “b”
for bold, “i” for italic, or “bi” for bold italic.

The point size of the font is restricted on the TI-Nspire™ CX and older handhelds. Choose one of these sizes: 7, 9, 10, 11, 12, or
24. Any font size supported by Windows® or Mac OS® can be used on the desktop software.

Returns the font family, style, and size previously in effect.

Introduced in platform.apiLevel = '1.0'

9.15 setPen
gc:setPen([thickness[, style]])

Sets the pen for drawing lines and borders. Thickness may be “thin”, “medium”, or “thick”. If the thickness is not specified, it
defaults to “thin”. The style can be “smooth”, “dotted”, or “dashed”. If the style is not specified, it defaults to “smooth”.

Introduced in platform.apiLevel = '1.0'

Chapter 9 Graphics Library 31

Chapter 10

Image Library

An “image” object is a container for graphical images, typically small GUI objects such as buttons, arrowheads, and other such
graphical adornments.

Starting with platform.apiLevel = '2.3' this library has been reworked to image resources rather then images encoded as
strings inside the script itself. Please refer to section B.1on page 163 for details about the deprecated behavior.

10.1 new
img = image.new(string) -- API Level < 2.3
img = image.new(resource) -- API Level 2.3

This function returns a new image object from an image resource or string, based on the API level. These two different kinds of
image description cannot be mixed within one script. Image resources support alpha blending on all platforms of the TI-
Nspire™ product family.

For details about authoring image resources please refer to the Script Editor section in either the teacher or student TI-Nspire™
software guidebook.

Introduced in platform.apiLevel = '1.0'

Extended in platform.apiLevel = ‘2.3’

10.2 copy
cimage = image:copy(width, height)

Returns a copy of the input image scaled to fit the specified pixel width and height. The width and height default to the size of
the input image.

Introduced in platform.apiLevel = '1.0'

10.3 height
h = image:height()

Returns the pixel height of the image.

Introduced in platform.apiLevel = '1.0'

10.4 rotate
rimage = image:rotate(angle)

Returns a copy of the input image rotated counterclockwise by angle degrees.

Introduced in platform.apiLevel = '2.0'

Chapter 10 Image Library 32

http://education.ti.com/en/us/guidebook/search
http://education.ti.com/en/us/guidebook/search

33 Chapter 10 Image Library

10.5 width
w = image:width()

Returns the pixel width of the image.

Introduced in platform.apiLevel = '1.0'

Chapter 11

Locale Library

11.1 name
locale.name()

Returns the name of the current locale. The locale name is a two-letter language code. The language code may be followed by
an underscore and two-letter country code.

Introduced in platform.apiLevel = '1.0'

Chapter 11 Locale Library 34

Chapter 12

Math Library Extension

In addition to the functions that come with the standard Lua math library, there is an interface to the TI-Nspire™ math server
that allows access to the advanced mathematical features of the TI-Nspire™ product.

Note

The TI-Nspire™ math server uses a number of unicode characters. For example, the math server uses Unicode character
U+F02F, i, UTF-8 character “\239\128\175”, for
imaginary numbers and another special character for the exponent for a scientific notation, small capital letter “E”.

See http://en.wikipedia.org/wiki/UTF-8 for a description of how to convert unicode to UTF-8 and vice versa. See TI-
Nspire™ Reference Guide for a list of unicode characters used in TI-Nspire™ software.

All results from the TI-Nspire™ math server are returned as full-precision expressions. To limit the precision of the result to
the display digits, retrieve the current display digits via math.getEvalSettings() and apply the appropriate precision before
displaying the value returned by the TI-Nspire™ math server.

12.1 eval
math.eval(math_expression) -- platform.apiLevel = '2.0'
math.eval(math_expression [,exact]) -- platform.apiLevel = '1.0'

This function sends an expression or command to the TI-Nspire™ math server for evaluation. The input expression must be a
string that the TI-Nspire™ math server can interpret and
evaluate.

The second parameter, exact, (platform.apiLevel = '1.0' only) is meaningful only with the Computer Algebra System. If true, it
instructs the math server to calculate and return exact numerical results when it can. The default value of exact is false, in
which case the math server attempts to calculate an approximate result.

Beginning with platform.apiLevel = '2.0', the evaluation is performed using the current document settings, except that all
evaluations are performed at full precision in approximate mode. The current document settings can be overridden by
math.setEvalSettings.

If the math server evaluates the expression successfully, it returns the results as a fundamental Lua data type. If the math
server cannot evaluate the expression because of a syntax, simplification, or semantic error, eval returns two results: nil and
an error number meaningful to the math server. (The error numbers are documented in the TI-Nspire™ Reference Guide - Error
Codes and Messages for math.eval.) If the math server calculates a symbolic result, it cannot be represented as a fundamental
Lua type, so eval returns nil and the string “incompatible data type.”

Example

To evaluate f1 for a given value in x, the parameter x must be converted to a string, and then any embedded “e” must be
replaced with Unicode character U+F000.

Listing 12.1:
Converting a Lua Number to a String to be Used in math.eval() (E Notation)

local mx = tostring(x):gsub("e", string.uchar(0xF000))
local expr = "f1(" .. mx .. ")"
return math.eval(expr)

Note

Because math.eval always does calculations in approximate mode, things like Boolean logic and some conversions will
throw an error:

Chapter 12 Math Library Extension 35

http://en.wikipedia.org/wiki/UTF-8
http://education.ti.com/en/us/guidebook/search
http://education.ti.com/en/us/guidebook/search
http://www.education.ti.com/guides

36 Chapter 12 Math Library Extension

r,e = math.eval('1 and 2') returns “Argument must be a Boolean expression or integer” error

r,e = math.eval(”0@>Base10”) returns “Domain Error”

math.evalStr works fine in such cases.

Warning

math.eval is not available during script initialization.

Introduced in platform.apiLevel = '1.0'

Extended in platform.apiLevel = ‘2.0’

12.2 evalStr
math.evalStr(math_expression)

This function sends an expression or command to the TI-Nspire™ math server for evaluation. The input expression must be a
string that the TI-Nspire™ math server can interpret and evaluate. The evaluation is performed using the current document
settings, which can be overridden by math.setEvalSettings. NOTE: All evaluations are performed at full precision regardless of
the document settings or overrides.

If the math server evaluates the expression successfully, it returns the results as a string. The evalStr function returns no result
if the math server does not return a calculated result. If the math server cannot evaluate the expression because of a syntax,
simplification, or semantic error, evalStr returns two results: nil and an error number meaningful to the math server.

Scientific Notation

The evaluation of “10.2∧20” (document settings in auto mode) returns the following result: 1.4859473959784 20. A closer
look at the result string reveals the box character as “\239\128\128”, which is the Unicode character U+F000 – a small
capital letter “E” used inside TI-Nspire™ software for the E notation.

Listing 12.2: math.evalStr() Returning Result in E Notation

result, error = math.evalStr('10.2^20')
firstFive = table.concat({string.byte(result, 1, 5)}, ' ')
lastFive = table.concat({string.byte(result, 15, 20)}, ' ')
print (result, ':', firstFive, '...', lastFive)

Listing 12.2 prints:

1.4859473959784 20 : 49 46 52 56 53 ... 52 239 128 128 50 48

Nagative numbers

The evaluation of “2-3” returns “-1”. The result string will be encoded as
“\226\136\146\49”. “\226\136\146” is Unicode character U+2212, which is a minus
sign.

Listing 12.3: math.evalStr() Returning Negative Numbers

result, error = math.evalStr('2-3')
print (result, ':', string.byte(result, 1, 10))

Listing 12.3 prints:

-1 : 226 136 146 498

Introduced in platform.apiLevel = '2.0'

12.3 getEvalSettings
math.getEvalSettings()

Returns a table of tables with the document settings that are currently being used by math.eval. These settings are equivalent
to the current document settings unless a call has been made to setEvalSettings.

Listing 12.4: TI-Nspire™ Software Default Settings Returned by getEvalSettings

{
{'Display Digits', 'Float6'},
{'Angle Mode', 'Radian'},
{'Calculation Mode', 'Auto'},
{'Real or Complex Format', 'Real'},
{'Exponential Format', 'Engineering'},
{'Vector Format', 'Normal'},
{'Base', 'Decimal'},
{'Unit System', 'SI'}, }

}

Introduced in platform.apiLevel = '2.0'

12.4 setEvalSettings
math.setEvalSettings(settingStructure)

This function is used to override one or more of the current document settings for all subsequent math evaluations performed
by math.eval and math.evalStr. It does not change the document context settings. The setting structure is a table of tables.
Each inner table consists of the name of the document setting to override and the name of the value to use instead.

Listing 12.5: Calling math.setEvalSettings() using a table with names

settings = {
{'Unit System', 'Eng/US'},
{'Calculation Mode', 'Approximate'},
{'Real or Complex Format', 'Polar'},
{'Exponential Format', 'Engineering'}

}

math.setEvalSettings(settings)

For user convenience, setEvalSettings also accepts the ordinal number of the setting to override and the ordinal number of the
value to use instead. The ordinal numbers to use correspond to the order of the settings and their values found at File >
Settings > Document Settings.

Listing 12.6: Calling math.setEvalSettings() using a table with ordinal number

settingsTable = {
{2, 3},
{4, 3},
{6, 3},
{8, 2}

}

math.setEvalSettings(settingsTable)

In fact, setEvalSettings accepts any combination of names and ordinal numbers. So the following example is also valid.

Listing 12.7: Calling math.setEvalSettings() using a table with combined names and numbers

settings = {
{3, 'Exact'},
{'Angle Mode', 2},
{'Real or Complex Format',

'Polar'},
{8, 2}

}

math.setEvalSettings(settings)

Chapter 12 Math Library Extension 37

38 Chapter 12 Math Library Extension

The functionmath.setEvalSettings may be called at any point in the script app. The modified document settings are used by
math.eval for all subsequent calls within the script app (unless modified by a subsequent call to setEvalSettings).

Precision of Results

All results from the TI-Nspire™ math server are returned as full-precision expressions. If users want to limit the display digits,
they must call math.getEvalSettings() and apply the appropriate precision before displaying the value returned by the TI-
Nspire™ math server.

Introduced in platform.apiLevel = '2.0'

Chapter 13

Module Library

require '<library name>'

Use require to load predefined libraries in TI-Nspire™ software. Please see the following table.

The behavior of require is the same as in standard Lua, but the available libraries are restricted. User-defined libraries are not
supported.

Library Description

color Table defining colors used in TI-Nspire™ software to color objects using the color picker.

physics Loads the physics module.

ble Basic Bluetooth® LE Interface

bleCentral Bluetooth® LE Interface for the central role

Colors defined in color table:

black darkgray gray mediumgray lightgray white

navy blue brown red magenta orange

yellow green dogerblue

Introduced in platform.apiLevel = '2.0'

Chapter 13 Module Library 39

Chapter 14

Platform Library

Platform specific information is available through the platform library.

14.1 apiLevel
platform.apiLevel

Uniquely identifies the Script environment. If the script does not request a desired API level it will always default to the API
level the script was created with.

Requesting a non-supported API level will result in the highest supported but below the requested API level supported by the
TI-Nspire™ software version running the script. But requesting an API level below platform.apiLevel = '1.0' will result in the
current API level of TI-Nspire™ software version running the script. Please see section A.1 for more details.

Note

• If present, the platform.apiLevel = ‘X.X’ statement should be in the main part of the script only. It is advisable to place it on
the first line of the script.

• Dynamically loaded scripts (load() or loadstring()) will use the same “platform.apiLevel
= ‘X.X’” as the main script. Requesting to change the API level within dynamically loaded scripts causes an error.

Introduced in platform.apiLevel = '2.0'1

Extended in platform.apiLevel = ‘2.3’

14.2 hw
platform.hw()

Returns a numeric value that indicates the CPU speed of the host hardware. The higher the number, the faster the hardware.

level host hardware

3 TI-Nspire™ family of handhelds

7 Microsoft® Windows®, Mac® and TI-Nspire™ App

Introduced in platform.apiLevel = '2.0'

14.3 isColorDisplay
platform.isColorDisplay()

Returns true if the display of the host platform is color. Returns false if the display is grayscale.

Introduced in platform.apiLevel = '1.0'

1Please see section B.4 on for details about the original behavior.

Chapter 14 Platform Library 40

41 Chapter 14 Platform Library

14.4 isDeviceModeRendering
platform.isDeviceModeRendering()

Returns true if the script is running on the handheld or in the emulator of the desktop software. Returns false if the script is
running in the normal view of the desktop software.

Note

platform.isDeviceModeRendering is not available during script initialization or within on.restore.

Introduced in platform.apiLevel = '1.0'

14.5 isTabletModeRendering
platform.isTabletModeRendering()

Returns true if the script is running on a tablet supporting touch otherwise false.

Introduced in platform.apiLevel = '2.2'

14.6 registerErrorHandler
platform.registerErrorHandler(function(lineNumber, errorMessage,
 callStack, locals) ... end)

This function sets the error handler callback function for the script. Setting an error handler callback function provides control
over what happens when an error is encountered in the script. Returning a true value prevents reporting the Error to the user.
The script will continue executing on the next event.

Note

The error handler callback function is not called for errors that occur during initialization or within on.restore.

Introduced in platform.apiLevel = '2.0'

14.7 window
platform.window

Returns the window object that the script application currently owns. The window consists of the portion of the page allotted
to the script app. Several applications can be visible when the page is arranged in a split layout. Each visible application has its
own window.

The window object has several methods of particular interest.

Introduced in platform.apiLevel = '1.0'

14.7.1 height and width

platform.window:height()
platform.window:width()

Routines height() and width() return the pixel height and width respectively of the display window.

Introduced in platform.apiLevel = '1.0'

14.7.2 invalidate

platform.window:invalidate(x, y, width, height)

This function invalidates a region of the window and forces it to repaint. x and y default to (0, 0) and width and height default
to the pixel width and height of the window. The entire window can be forced to repaint with a call to
platform.window:invalidate(), which allows all parameters to take their default values.

For performance reasons, especially for large screen resolutions, it is advisable to invalidate not all of the screen but the
smallest possible region.

Caution

Please make sure for moving objects to invalidate both the old and the new location of the object. In addition, based on the
selected pen setting of the graphics library, drawing lines and other shapes may draw to some degree outside of the
specified area. The extent of this area around the specified area might vary in addition by platform. Therefore, add some
additional space around the invalidate region to avoid drawing artifacts.

Invalidating multiple regions at a time might result in one or multiple calls to on.paint depending on the region and the
platform. Therefore the implementation of on.paint should not make any assumptions about the region to draw, but always
draw all of the screen.

Introduced in platform.apiLevel = '1.0'

14.7.3 setBackgroundColor

platform.window:setBackgroundColor([0xRRGGBB])

Sets the background color for the Script Application. If no color is provided, it defaults to none, causing the background color of
the Script Application to be the one of the system which is white.

Introduced in platform.apiLevel = '2.4'

14.7.4 setFocus

platform.window:setFocus(boolean)

This function sets the focus to the main window. Any focus of other objects is removed (currently only D2Editor).

Introduced in platform.apiLevel = '2.0'

14.7.5 getScrollHeight

platform.window:getScrollHeight()

This function returns the current scroll height if a docked keyboard is shown or 0 otherwise. Therefore the return value will
always be 0 on platforms not supporting touch.

See touch.isKeyboardAvailable() for details about keyboard availability.

Introduced in platform.apiLevel = '2.2'

14.7.6 setScrollHeight

platform.window:setScrollHeight()

Sets the scroll height if a docked keyboard is shown or is ignored otherwise. The valid range for this function is 0 to <keyboard
overlap height>. See on.keyboardUp() for keyboard overlap height.

Introduced in platform.apiLevel = '2.2'

14.7.7 displayInvalidatedRectangles

platform.window:displayInvalidatedRectangles(boolean)

Chapter 14 Platform Library 42

43 Chapter 14 Platform Library

Displays rectangles surrounding the actual invalidated area by the platform. Available for Computer Preview, TI-Nspire™ CX
Handheld and TI-Nspire™ CX iPad Apps. No operation on Handheld Preview.

Introduced in platform.apiLevel = '2.7'

14.8 withGC
platform.withGC(function, ...)

Executes function(... , gc) within a non-painting graphics context and returns all return values from function(). It is used to
support layout procedures that measure the width and height of strings outside of the paint context. It is a good practice to
separate the layout from the paint routine to enhance the performance of the script. A layout may happen during on.resize()
and when data is changing based on user interaction or timer expiration. The script should not assume that any state, like a
font size, is preserved from one call of platform.withGC to the next call of platform.withGC.

This graphics context cannot be used to draw.

Listing 14.1: Example of Using withGC() to get the Pixel Length and Height of a String

function getHeightWidth(str, gc)
 gc:setFont('serif', 'b', 12) -- Set the font
 width = gc:getStringWidth(str) -- Pixel length of str
 height = gc:getStringHeight(str) -- Pixel height of str

return height, width
end

height, width = platform.withGC(getHeightWidth, 'Hello World')

Introduced in platform.apiLevel = '2.0'

14.9 getDeviceID
platform.getDeviceID()

Returns the Handheld Product ID.

Introduced in platform.apiLevel = '2.7'

Chapter 15

String Library Extension

In addition to the standard Lua string functions, a few routines aid handling Unicode strings.

15.1 split
string.split(str [,delim])

Divides str into substrings based on a delimiter, returning a list of the substrings. The default pattern for the delimiter is white
space (“%s+”).

Introduced in platform.apiLevel = '1.0'

15.2 uchar
string.uchar(chnum, ...)

Unicode characters can be included in strings by encoding them in UTF-8. This routine converts one or more Unicode character
numbers into a UTF-8 string.

Introduced in platform.apiLevel = '1.0'

15.3 usub
string.usub(str, startpos, endpos)
or

str:usub(startpos, endpos)

This routine returns a substring of str. It is the Unicode version of string.sub. It accounts for multi-byte characters encoded in
UTF-8.

Caution

This is an expensive routine. It allocates a temporary memory buffer during its operation.

Listing 15.1: Examples for string.usub()

print(string.usub("abc", 1, 1)) -- prints "a"
print(string.usub("abc", 2, 2)) -- prints "b"
print(string.usub("abc", 2, 3)) -- prints "bc"

Introduced in platform.apiLevel = '1.0'

15.4 pack
characteristicValue = string.pack("formatString", ...)

Packs one or multiple Lua values into a Bluetooth ® LE characteristic data value. The number or arguments after the
formatString must match the number of formats specified inside the formatString. The format specifier used to build the
formatString as specified in Table 20.1 and additional details can be found in subsection 20.1.5.

Chapter 15 String Library Extension 44

45 Chapter 15 String Library Extension

Parameter Type Description
"formatString" in string Lists one or multiple formats to be packed

... in any The parameter list associated to the format specified

characteristicValue out string The packed characteristic value to be written.

Listing 15.2: Example Showing the use of string.pack()

data = string.pack("bb2b", true, 2, false) -- binary data 1100
data = string.pack("bbr2b", true, false, true) -- binary data 10001

If the format is complex and repetitively used across multiple characteristic values it it is possible to split the packing of the
data into multiple calls to pack. Combining the multiple pack results into one piece of data can be achieved by string
concatenation. Listing 15.3 shows two simple
lines which result in the same data value.

Listing 15.3: Concatenation of Multiple calls to string.pack()

data1 = string.pack('u8u8', 10, 12)
data2 = string.pack('u8', 10) .. string.pack('u8', 12)

Introduced in platform.apiLevel = '2.7'

15.5 unpack
..., remnant = string.unpack("formatString", characteristicValue)

Unpacks a Bluetooth ® LE characteristic data value into one or multiple Lua values. The number of returned values is defined by
the format specifiers inside the formatString. All supported format specifiers are listed in Table 20.1 and additional details
can be found in subsection 20.1.5 .

Parameter Type Description
"formatString" in

string
Lists one or multiple formats to be unpacked

characteristicValue in
string

The characteristic value read.

... out any The parameter list associated to the format specified

remnant out
string

The remnant of the characteristicValue if the format did not decode all data,
or nil otherwise.

Listing 15.4: Example Showing the use of string.unpack()

bool1, number, bool2 = string.unpack("bb2b", data)
bool1, bool2, bool3 = string.unpack("bbr2b", data)

Similar to the pack function it is possible to split the unpacking of the data into multiple calls to unpack. This can be achieved
by passing the remnant returned of one call to unpack as characteristic value to the next call of unpack. Listing 15.5 show
the two scenarios.

Listing 15.5: Splitting Unpacking into Multiple calls to string.unpack()

ten, twelve = string.unpack('u8u8', '\\10\\12')
ten, remnant = string.unpack('u8', '\\10\\12') -- returns 10, '\\12'
twelve = string.unpack('u8', remnant) -- returns 12, nil

Introduced in platform.apiLevel = '2.7'

Chapter 16

Timer Library

Each script application has one timer at its disposal. The timer resolution depends on the platform. It is about 0.02 second on
the handheld. Please be cautious with short timer periods on the handheld.

The script application should implement the on.timer() function to respond to timer expiration.

The timer continues to send ticks to the script application even when its window is not visible on the screen.

The timer is stopped automatically when the document containing the script application is closed or if the script application is
deleted from the document.

16.1 getMilliSecCounter
timer.getMilliSecCounter()

Returns the value of the internal millisecond counter. The counter rolls over to zero when it passes 232 milliseconds.

Introduced in platform.apiLevel = '1.0'

16.2 start
timer.start(period)

Starts the timer with the given period in seconds. The period must be ≥ 0.01 (10 ms). If the timer is already running when this
routine is called, the timer is reset to the new period.

Introduced in platform.apiLevel = '1.0'

Caution

timer.start() should not be called when processing an on.timer() event unless it is the final statement before the on.timer()
event completes.

16.3 stop
timer.stop()

Stops the timer.

Introduced in platform.apiLevel = '1.0'

Chapter 16 Timer Library 46

Chapter 17

Tool Palette Library

The tool palette provides a menu from which the user can select commands that invoke functionality of the script app.

17.1 register
toolpalette.register(menuStructure)

The script app uses this routine to register its tool palette with the TI-Nspire™ framework. The menu structure is a table
describing the name of each toolbox, the menus that appear in each tool box, and the function to call when the user invokes
the menu item.

The function toolpalette.register() can be called once in the top level flow of the script app. Once registered, the tool palette is
managed automatically by the TI-Nspire™ framework. Up to 15 toolboxes can be created with up to 30 menu items each.

When the user chooses an item from a tool box, the associated function is called with two parameters: the name of the
toolbox and the name of the menu item.

A call to toolpalette.register() within the paint context might be ignored and should therefore be avoided.

Beginning with apiLevel ‘2.0’ toolpalette.register() can be called multiple times in the program flow to change dynamically at
runtime.
Calling toolpalette.register(nil) deactivates the toolpalette.

Listing 17.1 demonstrate the layout of a tool palette’s menu structure.

Introduced in platform.apiLevel = '1.0'

Extended in platform.apiLevel = ‘2.0’

Listing 17.1: Registering a Tool Palette

menu = {
{"Mode", -- Tool box "Mode"
{"Decimal", setDec}, -- Menu item "Decimal" calls setDec()
{"Hexadecimal", setHex},

 "-", -- Section divider
{"Signed", setSigned},
{"Unsigned", setUnsigned},

 },
{"Boolean",
{"And", binopAnd},
{"Or", binopOr},

 },
} toolpalette.register(menu)

17.2 enable
toolpalette.enable(toolname, itemname, enable)

This routine enables or disables a menu item in the tool palette. Parameter toolname is a string containing the name of the
top level tool box. Parameter itemname is a string containing the name of the menu item. Parameter enable is a Boolean
value that enables the menu item if true or disables the menu item if false.

Chapter 17 Tool Palette Library 47

48 Chapter 17 Tool Palette Library

This routine returns true if the menu item was properly enabled or disabled. It returns nil if the toolname / itemname pair
cannot be found in the registered menu items.

Note

toolpalette.register() must be called prior to toolpalette.enable().

Introduced in platform.apiLevel = '1.0'

17.3 enableCut
toolpalette.enableCut(enable)

This routine enables or disables the Edit > Cut menu command. Parameter enable is a Boolean value that enables the
command if true or disables the menu item if false.

Introduced in platform.apiLevel = '1.0'

17.4 enableCopy
toolpalette.enableCopy(enable)

This routine enables or disables the Edit > Copy menu command. Parameter enable is a Boolean value that enables the
command if true or disables the menu item if false.

Introduced in platform.apiLevel = '1.0'

17.5 enablePaste
toolpalette.enablePaste(enable)

This routine enables or disables the Edit > Paste menu command. Parameter enable is a Boolean value that enables the
command if true or disables the menu item if false.

Introduced in platform.apiLevel = '1.0'

Chapter 18

Variable Library

A symbol table is used by the TI-Nspire™ math engine to calculate and store variables. This library gives scripts access to the
variables stored in the symbol table.

Not all variables in the symbol table have compatible types in Lua, but many important variable types are supported: real and
integer numbers, strings, and lists of numbers and strings, matrices (represented in Lua as lists of lists), and boolean constants
true and false.

18.1 list
var.list()

This function returns a list of names of variables currently defined in the symbol table.

Introduced in platform.apiLevel = '1.0'

18.2 makeNumericList
var.makeNumericList(name)

Creates a list in the symbol table with the given name. The list is optimized to hold numeric values. Routines storeAt and
recallAt operate much more efficiently on lists that are created with this function.

Usage Note

This function cannot be used to create a numeric matrix. Routines var.recallAt and var.storeAt documented below will work
with matrices but only if they are created by some other means (see Listing 18.1).

Listing 18.1: Example for Accessing a Matrix via the Variable Library

var.store("mat", {{1,2}, {3,4}}) -- creates matrix mat
var.storeAt("mat", 13.3, 1, 1)
val = var.recallAt("mat", 1, 1)

Introduced in platform.apiLevel = '2.0'

18.3 monitor
var.monitor(name)

Turns on monitoring of the math variable with given name. When another application changes the math variable, this script
application’s on.varChange handler is called. See the description of on.varChange below. Any other return value from 0 is an
error value.

Introduced in platform.apiLevel = '1.0'

18.4 recall
var.recall(name)

Chapter 18 Variable Library 49

50 Chapter 18 Variable Library

Returns the value of a math variable with the given name. If the type of the named variable has no compatible Lua type, then
nil and an error message are returned.

Introduced in platform.apiLevel = '1.0'

18.5 recallAt
var.recallAt(name, col [,row])

Recalls a value from a cell of a list or matrix in the symbol table. col is a 1-based column number of the matrix or list. row is a
1-based row number. row is only required when recalling a value from a matrix.

This function is optimized to work with numeric values and normally returns a number. If the value of the recalled cell is not
numeric, this function returns nil and an error message
string.

Introduced in platform.apiLevel = '2.0'

18.6 recallStr
var.recallStr(name)

Returns the value of a math variable with the given name as a string. Some math types have no compatible Lua type but all
math types can be represented as a string. If the value cannot be recalled even as a string, this function returns nil and an error
message.

Introduced in platform.apiLevel = '1.0'

18.7 store
var.store(name, value)

Stores value as a math variable with the given name. If the value cannot be stored, an error message is returned; otherwise,
nil is returned.

Introduced in platform.apiLevel = '1.0'

18.8 storeAt
var.storeAt(name, numericValue, col [, row])

Stores a numeric value into an element of a math list or matrix with the given name. col is a 1-based column number of the
matrix or list. row is a 1-based row number. row is only required when storing a value into a matrix.

The value must be numeric. Any other type raises an error.

New values can be appended to a list by storing to one column past the end of the list. This function is useful particularly as an
optimization when adding new values to a list during a simulation.

Returns nil on success or “cannot store” if the value cannot be stored at the given index.

Introduced in platform.apiLevel = '2.0'

18.9 unmonitor
var.unmonitor(name)

Turns off monitoring of the named math variable.

Introduced in platform.apiLevel = '1.0'

Chapter 19

Physics Library

This is an interface library to Chipmunk Physics version 5.3.4. For details about this library see http://chipmunk-
physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/.

To use this library the physics module must be loaded: “require ('physics')”.

This library is introduced in platform.apiLevel = ‘2.0’.

19.1 Miscellaneous routines
19.1.1 INFINITY

infinity = physics.misc.INFINITY()

Parameter Type Description
Infinity out number Infinity value

Returns a number representing infinity in the physics engine.

Introduced in platform.apiLevel = '2.0'

19.1.2 momentForBox

inertia = physics.misc.momentForBox(mass, width, height)

Parameter Type Description
mass in number The mass of the box

width in number The width of the box

height in number The height of the box
inertia out number The inertia of the box

This routine computes the moment of inertia for a solid box. This is a useful helper routine for computing the moment of
inertia as an input to the physics.Body(...) constructor.

Introduced in platform.apiLevel = '2.0'

19.1.3 momentForCircle

inertia = physics.misc.momentForCircle(mass, innerRadius,
 outerRadius, offBody)

Parameter Type Description
mass in number The mass of the circle

innerRadius in number The inner radius of the circle

Chapter 19 Physics Library 51

http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/
http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

52 Chapter 19 Physics Library

Parameter Type Description
outerRadius in number The outer radius of the circle
offset in physics.Vect The offset of the circle from the center of gravity
inertia out number The inertia of the circle

This routine computes the moment of inertia for a circle. A solid circle has an inner radius of 0. This is a useful helper routine
for computing the moment of inertia as an input to the physics.Body(...) constructor.

Introduced in platform.apiLevel = '2.0'

19.1.4 momentForPoly

inertia = physics.misc.momentForPoly(mass, vertices, offset)

Parameter Type Description
mass in number The mass of the polygon

vertices in {physics.Vect} A list of vertices defining the shape of the polygon

offset in physics.Vect The offset of the polygon from the center of gravity
inertia out number The inertia of the polygon

This routine computes the moment of inertia for a polygon. This is a useful helper routine for computing the moment of inertia
as an input to the physics.Body(...) constructor.

Introduced in platform.apiLevel = '2.0'

19.1.5 momentForSegment

inertia = physics.misc.momentForSegment(mass, endPointA,
 endPointB)

Parameter Type Description
mass in number The mass of the segment

endPointA in physics.Vect The point defining one end of the segment

endPointB in physics.Vect The point defining the other end of the segment
inertia out number The inertia of the segment

This routine computes the moment of inertia for a segment. The end points can be in either
world or local coordinates. This is a useful helper routine for computing the moment of inertia as an input to the physics.Body
(...) constructor.

Introduced in platform.apiLevel = '2.0'

19.2 Vectors
A vector is a 2-dimensional object with x and y components. Its type is TI.cpVect.

19.2.1 Vect

vector = physics.Vect(x, y)
vector = physics.Vect(angle)
vector = physics.Vect(vect)

Parameter Type Description
x in number The x component of the vector

y in number The y component of the vector

angle in number An angle in radians
vect in physics.Vect A vector

vector out physics.Vect A vector

Creates a vector with initial x and y component values. The second form creates a unit vector pointing in direction angle. The
third form creates a copy of the input vector.

Introduced in platform.apiLevel = '2.0'

19.2.2 add

sum = physics.Vect:add(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect A vector to add to self

sum out physics.Vect The vector sum of self and vec

Returns the vector sum of self and vec.

The Vect class also implements the addition operator (+). Therefore vectors v1 and v2 can be added with the expression v1 +
v2.

Introduced in platform.apiLevel = '2.0'

19.2.3 clamp

clamped = physics.Vect:clamp(len)

Parameter Type Description
self in physics.Vect The input vector

len in number The maximum length of the vector

clamped out physics.Vect A new vector with a length no longer than len

Returns a copy of self clamped to length len.

Introduced in platform.apiLevel = '2.0'

19.2.4 cross

crossprod = physics.Vect:cross(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect A vector to cross with self

zmag out number The z magnitude of the cross product of self and vec

Returns the z magnitude of the cross product of self and vec.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 53

54 Chapter 19 Physics Library

19.2.5 dist

dist = physics.Vect:dist(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect A vector used to find the distance from self

dist out number The distance from self to vec

Returns the distance between self and vec.

Introduced in platform.apiLevel = '2.0'

19.2.6 distsq

distsq = physics.Vect:distsq(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect The vector used to find the distance squared from self

distsq out number The distance squared from self to vec

Returns the distance squared between self and vec. For distance comparison, this routine is faster than physics.Vect:dist.

Introduced in platform.apiLevel = '2.0'

19.2.7 dot

dotprod = physics.Vect:dot(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect The other vector

dotprod out number The scalar dot product of self and vec

Returns the scalar dot product of self and vec.

Introduced in platform.apiLevel = '2.0'

19.2.8 eql

isequ = physics.Vect:eql(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect The vector against which to compare with self

isequ out boolean True if the components of self equal the components of vec

Returns true if the x and y components of self equal those of vec. Take the usual precautions when comparing floating point
numbers for equality.

The Vect class also implements the equal comparison operator (==). Therefore vectors v1 and v2 can be compared with the
expression v1 == v2.

Introduced in platform.apiLevel = '2.0'

19.2.9 length

len = physics.Vect:length()

Parameter Type Description
self in physics.Vect The input vector

len out number The length of vector self

Returns the magnitude of self.

Introduced in platform.apiLevel = '2.0'

19.2.10 lengthsq

lensq = physics.Vect:lengthsq()

Parameter Type Description
self in physics.Vect The input vector

lensq out number The length squared of vector self

Returns the length squared of self. This routine is faster than Vect:length() when you only need to compare lengths.

Introduced in platform.apiLevel = '2.0'

19.2.11 lerp

v = physics.Vect:lerp(vec, f)

Parameter Type Description
self in

physics.Vect
The input vector

vec in
physics.Vect

The other vector

f in number f is a fractional number from 0 to 1 representing the proportion of distance
between self and vec

v out
physics.Vect

A vector interpolated between self and vec

Returns the linear interpolation between self and vec as a vector. f is the fraction of distance between self and vec.

Note

May not behave as expected for f larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

19.2.12 lerpconst

v = physics.Vect:lerpconst(vec, d)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect The other vector

d in number The distance from self to vec to interpolate a new vector

v out physics.Vect

Chapter 19 Physics Library 55

56 Chapter 19 Physics Library

Returns a vector interpolated from self towards vec with length d.

Note

May not behave as expected for d larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

19.2.13 mult

v = physics.Vect:mult(factor)

Parameter Type Description
self in physics.Vect The input vector

factor in number The value to multiply by self

v out physics.Vect The resulting scaled vector

Multiplies a vector by a factor.

Introduced in platform.apiLevel = '2.0'

19.2.14 near

isnear = physics.Vect:near(vec, distance)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect The value to multiply by self

distance in number The distance from vec

isnear out boolean True if self is within distance of vec

Determines if self is near another vector.

Introduced in platform.apiLevel = '2.0'

19.2.15 neg

v = physics.Vect:neg()

Parameter Type Description
self in physics.Vect The input vector

v out physics.Vect The resulting negated vector

Returns the negative of self.

The Vect class also implements the unary minus operator (-self).

Introduced in platform.apiLevel = '2.0'

19.2.16 normalize

normvec = physics.Vect:normalize()

Parameter Type Description
self in physics.Vect The input vector

normvec out physics.Vect The resulting normalized vector

Returns a normalized copy of self. The length of a normal vector is 1.

Introduced in platform.apiLevel = '2.0'

19.2.17 normalizeSafe

normvec = physics.Vect:normalizeSafe()

Parameter Type Description
self in physics.Vect The input vector

normvec out physics.Vect The resulting normalized vector

Returns a normalized copy of self. Protects against division by zero.

Introduced in platform.apiLevel = '2.0'

19.2.18 perp

perpvec = physics.Vect:perp()

Parameter Type Description
self in physics.Vect The input vector

perpvec out physics.Vect The resulting perpendicular vector

Returns a vector perpendicular to self. (90 degree rotation).

Introduced in platform.apiLevel = '2.0'

19.2.19 project

pvec = physics.Vect:project(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect The other vector

pvec out physics.Vect The vector of self projected onto vec

Computes the projection of self onto another vector.

Introduced in platform.apiLevel = '2.0'

19.2.20 rotate

rvec = physics.Vect:rotate(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect The other vector

rvec out physics.Vect The resulting rotated vector

Uses complex multiplication to rotate self by vec. Scaling will occur if self is not a unit vector.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 57

58 Chapter 19 Physics Library

19.2.21 rperp

perpvec = physics.Vect:rperp()

Parameter Type Description
self in physics.Vect The input vector

perpvec out physics.Vect The resulting perpendicular vector

Returns a vector perpendicular to self. (90 degree rotation)

Introduced in platform.apiLevel = '2.0'

19.2.22 setx

self = physics.Vect:setx(x)

Parameter Type Description
self in physics.Vect The vector to modify

x in number The new value of the x component of the vector

self out physics.Vect The input vector is returned as the output

Changes the value of the x component of self. Returns self.

Introduced in platform.apiLevel = '2.0'

19.2.23 sety

self = physics.Vect:sety(y)

Parameter Type Description
self in physics.Vect The vector to modify

y in number The new value of the y component of the vector

self out physics.Vect The input vector is returned as the output

Changes the value of the y component of self. Returns self.

Introduced in platform.apiLevel = '2.0'

19.2.24 slerp

v = physics.Vect:slerp(vec, f)

Parameter Type Description
self in

physics.Vect
A unit vector

vec in
physics.Vect

The other unit vector

f in number f is a fractional number from 0 to 1 representing the proportion of distance
between self and vec

v out
physics.Vect

A vector interpolated between self and vec

Computes a spherical linear interpolation between unit vectors self and vec. See http://en.wikipedia.org/wiki/Slerp for a
discussion of the meaning, value, and usage of spherical linear interpolation.

http://en.wikipedia.org/wiki/Slerp

Listing 19.1: Spherical Linear Interpolation Example

local vect1 = physics.Vect(math.pi/3) -- unit vector
local vect2 = physics.Vect(math.pi/2) -- unit vector
local result = vect1:slerp(vect2, 0.55)

Note

This routine computes meaningful results only when the two inputs are unit vectors. May not behave as expected for f
larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

19.2.25 slerpconst

v = physics.Vect:slerpconst(vec, angle)

Parameter Type Description
self in physics.Vect A unit vector

vec in physics.Vect The other unit vector

angle in number The maximum angle between self and vec to interpolate a new vector

v out physics.Vect

Returns the spherical linear interpolation from self towards vec, but by no more than angle in radians. See
http://en.wikipedia.org/wiki/Slerp for a discussion of the meaning, value, and usage of spherical linear interpolation.

Note

This routine computes meaningful results only when the two inputs are unit vectors.

Introduced in platform.apiLevel = '2.0'

19.2.26 sub

diff = physics.Vect:sub(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect A vector to subtract from self

diff out physics.Vect The vector difference between self and vec

Returns the vector difference of self and vec.

The Vect class also implements the subtraction operator (-). Therefore vector v2 can be subtracted from v1 with the
expression v1 - v2.

Introduced in platform.apiLevel = '2.0'

19.2.27 toangle

angle = physics.Vect:toangle()

Parameter Type Description
self in physics.Vect The input vector

angle out number The angle of self

Returns the angle in radians of self.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 59

http://en.wikipedia.org/wiki/Slerp

60 Chapter 19 Physics Library

19.2.28 unrotate

uvec = physics.Vect:unrotate(vec)

Parameter Type Description
self in physics.Vect The input vector

vec in physics.Vect The other vector

uvec out physics.Vect The resulting unrotated vector

Inverse of physics.Vect:rotate(vec).

Introduced in platform.apiLevel = '2.0'

19.2.29 x

x = physics.Vect:x()

Parameter Type Description
self in physics.Vect The input vector

x out number The value of the x component of the vector

Returns the value of the x component of the input vector.

Introduced in platform.apiLevel = '2.0'

19.2.30 y

y = physics.Vect:y()

Parameter Type Description
self in physics.Vect The input vector

y out number The value of the ycomponent of the vector

Returns the value of the y component of the input vector.

Introduced in platform.apiLevel = '2.0'

19.3 Bounding Boxes
A bounding box is a structure the contains the left, bottom, right, and top edges of a box. Its type is TI.cpBB.

19.3.1 BB

bb = physics.BB(l, b, r, t)

Parameter Type Description
l in number left

b in number bottom

r in number right

t in number top

bb out physics.BB A bounding box with boundaries left, bottom, right, and top

Returns a new bounding box with the given initial edges.

Introduced in platform.apiLevel = '2.0'

19.3.2 b

bottom = physics.BB:b()

Parameter Type Description
self in physics.BB The input bounding box

bottom out number The bottom edge of the bounding box

Returns the bottom edge of the bounding box.

Introduced in platform.apiLevel = '2.0'

19.3.3 clampVect

cvec = physics.BB:clampVect(vec)

Parameter Type Description
self in physics.BB The input bounding box

vec in physics.Vect A vector

cvec out physics.Vect A vector clamped to the bounding box

Returns a copy of vec clamped to the bounding box.

Introduced in platform.apiLevel = '2.0'

19.3.4 containsBB

bool = physics.BB:containsBB(other)

Parameter Type Description
self in physics BB The input bounding box

other in physics BB The other bounding box

bool out boolean True if self completely contains the other bounding box

Determines if a bounding box contains another bounding box.

Introduced in platform.apiLevel = '2.0'

19.3.5 containsVect

bool = physics.BB:containsVect(vec)

Parameter Type Description
self in physics.BB The input bounding box

vec in physics.Vect A vector

bool out boolean True if self contains vector vec

Determines if a bounding box contains a vector.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 61

62 Chapter 19 Physics Library

19.3.6 expand

bb = physics.BB:expand(vec)

Parameter Type Description
self in physics.BB The input bounding box

vec in physics.Vect A vector

bb out physics.BB The bounding box self expanded to include vector vec

Returns the bounding box that contains both self and vec.

Introduced in platform.apiLevel = '2.0'

19.3.7 intersects

bool = physics.BB:intersects(other)

Parameter Type Description
self in physics.BB The input bounding box

other in physics.BB The other bounding box

bool out boolean True if self intersects the other bounding box

Determines if two bounding boxes intersect.

Introduced in platform.apiLevel = '2.0'

19.3.8 l

left = physics.BB:l()

Parameter Type Description
self in physics.BB The input bounding box

left out number The left edge of the bounding box

Returns the left edge of the bounding box.

Introduced in platform.apiLevel = '2.0'

19.3.9 merge

bb = physics.BB:merge(other)

Parameter Type Description
self in physics BB The input bounding box

other in physics.BB The other bounding box

bb out physics.BB The bounding box that contains both self and the other bound-ing box

Returns the bounding box that contains both self and the other bounding box.

Introduced in platform.apiLevel = '2.0'

19.3.10 setb

self = physics.BB:setb(bottom)

Parameter Type Description
self in physics.BB The input bounding box

bottom in number The new value for the bottom edge of the bounding box

self out physics.BB The input bounding box is returned as the output

Sets the bottom edge of the bounding box to a new value. Returns self.

Introduced in platform.apiLevel = '2.0'

19.3.11 r

right = physics.BB:r()

Parameter Type Description
self in physics.BB The input bounding box

right out number The right edge of the bounding box

Returns the right edge of the bounding box.

Introduced in platform.apiLevel = '2.0'

19.3.12 setl

self = physics.BB:setl(left)

Parameter Type Description
self in physics.BB The input bounding box

left in number The new value for the left edge of the bounding box

self out physics.BB The input bounding box is returned as the output

Sets the left edge of the bounding box to a new value. Returns self.

Introduced in platform.apiLevel = '2.0'

19.3.13 setr

self = physics.BB:setr(right)

Parameter Type Description
self in physics.BB The input bounding box

right in number The new value for the right edge of the bounding box

self out physics.BB The input bounding box is returned as the output

Sets the right edge of the bounding box to a new value. Returns self.

Introduced in platform.apiLevel = '2.0'

19.3.14 sett

self = physics.BB:sett(top)

Parameter Type Description
self in physics.BB The input bounding box

Chapter 19 Physics Library 63

64 Chapter 19 Physics Library

Parameter Type Description
top in number The new value for the top edge of the bounding box

self out physics.BB The input bounding box is returned as the output

Sets the top edge of the bounding box to a new value. Returns self.

Introduced in platform.apiLevel = '2.0'

19.3.15 t

top = physics.BB:t()

Parameter Type Description
self in physics.BB The input bounding box

top out number The top edge of the bounding box

Returns the top edge of the bounding box.

Introduced in platform.apiLevel = '2.0'

19.3.16 wrapVect

wvec = physics.BB:wrapVect(vec)

Parameter Type Description
self in physics.BB The input bounding box

vec in physics.Vect A vector

wvec out physics.Vect A vector wrapped to the bounding box

Returns a copy of vec wrapped to the bounding box.

Introduced in platform.apiLevel = '2.0'

19.4 Bodies
A body holds the physical properties (mass, position, rotation, velocity, etc.) of an object. It does not have a shape until you
attach one (or more) to it. Its type is TI.cpBody.

19.4.1 Body

body = physics.Body(mass, inertia)

Parameter Type Description
mass in number Mass of the body

inertia in number The inertia of the body

body out physics.Body A new Body with the supplied mass and inertia

Returns a new Body with the given mass and moment of inertia.

Use the provided helper functions to compute the moment of inertia.

Introduced in platform.apiLevel = '2.0'

19.4.2 activate

self = physics.Body:activate()

Parameter Type Description
self in physics.Body The input Body

self out physics.Body The input Body is returned as the output

Activates a sleeping body.

Info

See http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for an explanation of this routine.

Introduced in platform.apiLevel = '2.0'

19.4.3 angle

angle = physics.Body:angle()

Parameter Type Description
self in physics.Body The input Body

angle out number The angle of the Body in radians

Returns the angle in radians of the orientation of the body.

Introduced in platform.apiLevel = '2.0'

19.4.4 angVel

avel = physics.Body:angVel()

Parameter Type Description
self in physics.Body The input Body

avel out number The angular velocity of the Body in radians per unit time

Returns the angular velocity of the body in radians per unit time.

Introduced in platform.apiLevel = '2.0'

19.4.5 applyForce

self = physics.Body:applyForce(forceVect, rOffset)

Parameter Type Description
self in physics.Body The input Body

forceVect in physics.Vect A force vector

rOset in physics.Vect Vector offset of the force relative to the Body

self out physics.Body The input Body is returned as the output

Apply force vector on self at a relative offset from the center of gravity.

Introduced in platform.apiLevel = '2.0'

19.4.6 applyImpulse

self = physics.Body:applyImpulse(impulseVect, rOffset)

Chapter 19 Physics Library 65

http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

66 Chapter 19 Physics Library

Parameter Type Description
self in physics.Body The input Body

impulseVect in physics.Vect Impulse force on the Body

rOset in physics.Vect Vector offset of the force relative to the Body

self out physics.Body The input Body is returned as the output

Apply the impulse vector on self at a relative offset from the center of gravity.

Introduced in platform.apiLevel = '2.0'

19.4.7 data

obj = physics.Body:data()

Parameter Type Description
self in physics.Body The input Body

obj out Lua object An object previously set on the Body by the programmer

Returns the contents of the programmer data eld of the Body.

Introduced in platform.apiLevel = '2.0'

19.4.8 force

fvec = physics.Body:force()

Parameter Type Description
self in physics.Body The input Body

fvec out physics.Vect The force vector on the Body

Returns the force vector on the body.

Introduced in platform.apiLevel = '2.0'

19.4.9 isRogue

bool = physics.Body:isRogue()

Parameter Type Description
self in physics.Body The input Body

bool out boolean True if the Body is a rogue Body

Returns true if the Body is a rogue Body, never having been added to the simulation Space.

Info

See http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for an explanation of rogue bodies.

Introduced in platform.apiLevel = '2.0'

19.4.10 isSleeping

bool = physics.Body:isSleeping()

http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Parameter Type Description
self in physics.Body The input Body

bool out boolean True if the Body is sleeping

Returns true if the body is sleeping.

Info

See http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for an explanation of rogue bodies.

Introduced in platform.apiLevel = '2.0'

19.4.11 local2World

wvec = physics.Body:local2World(lvec)

Parameter Type Description
self in physics.Body The input Body

lvec in physics.Vect A vector relative to the position of the Body

wvec out physics.Vect A vector in world coordinates

Converts lvec from body-relative coordinates to world coordinates. Returns the converted vector.

Introduced in platform.apiLevel = '2.0'

19.4.12 kineticEnergy

ke = physics.Body:kineticEnergy()

Parameter Type Description
self in physics.Body The input Body

ke out number The total kinetic energy of the Body

Returns the kinetic energy of the body..

Introduced in platform.apiLevel = '2.0'

19.4.13 mass

m = physics.Body:mass()

Parameter Type Description
self in physics.Body The input Body

m out number The mass of the Body

Returns the mass of the body.

Introduced in platform.apiLevel = '2.0'

19.4.14 moment

m = physics.Body:moment()

Chapter 19 Physics Library 67

http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

68 Chapter 19 Physics Library

Parameter Type Description
self in physics.Body The input Body

m out number The moment of inertia of the Body

Returns the moment of inertia of the body.

Introduced in platform.apiLevel = '2.0'

19.4.15 pos

p = physics.Body:pos()

Parameter Type Description
self in physics.Body The input Body

p out physics.Vect The position of the Body

Returns the vector position of the body.

Introduced in platform.apiLevel = '2.0'

19.4.16 resetForces

self = physics.Body:resetForces()

Parameter Type Description
self in physics.Body The input Body

self out physics.Body The input Body is returned as the output

Zero both the force and torque accumulated on self.

Introduced in platform.apiLevel = '2.0'

19.4.17 rot

rvec = physics.Body:rot()

Parameter Type Description
self in physics.Body The input Body

rvec out physics.Vect The unit vector orientation of the Body

Returns the vector orientation of the body. This is a unit vector cached from the last calculated angle of the Body.

Introduced in platform.apiLevel = '2.0'

19.4.18 setAngle

self = physics.Body:setAngle(angle)

Parameter Type Description
self in physics.Body The input Body

angle in number The angle of rotation in radians of the Body

angle out physics.Body The input Body is returned as the output

Updates the angle of rotation in radians of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.19 setAngVel

self = physics.Body:setAngVel(vel)

Parameter Type Description
self in physics.Body The input Body

vel in number The angular velocity in radians per unit time of the Body

avel out number The input Body is returned as the output

Updates the angular velocity of the body. The angular velocity is in radians per unit time.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.20 setData

self = physics.Body:setData(value)

Parameter Type Description
self in physics.Body The input Body

value in object A programmer-supplied Lua object

self out physics.Body The input Body is returned as the output

Sets the programmer data field of the Body. The programmer can store any Lua object in this field. This is a handy place to
store a reference to a simulation object.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.21 setForce

self = physics.Body:setForce(vector)

Parameter Type Description
self in physics.Body The input Body

vector in physics.Vect The vector of force on the Body

self out physics.Body The input Body is returned as the output

Updates the force vector on the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.22 setMass

self = physics.Body:setMass(mass)

Chapter 19 Physics Library 69

70 Chapter 19 Physics Library

Parameter Type Description
self in physics.Body The input Body

mass in number The mass of the Body

self out physics.Body The input Body is returned as the output

Updates the mass of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.23 setMoment

self = physics.Body:setMoment(moment)

Parameter Type Description
self in physics.Body The input Body

moment in number The moment of inertia of the Body

self out physics.Body The input Body is returned as the output

Updates the moment of inertia of the body.

Use the provided helper functions to compute the moment of inertia.

Returns the Body.

.Introduced in platform.apiLevel = '2.0'

19.4.24 setPos

self = physics.Body:setPos(vector)

Parameter Type Description
self in physics.Body The input Body

vector in physics.Vect The position of the Body

self out physics.Body The input Body is returned as the output

Updates the position of the body. Returns the Body.

Returns the Body.

.Introduced in platform.apiLevel = '2.0'

19.4.25 setPositionFunc

self = physics.Body:setPositionFunc(func)

Parameter Type Description
self in physics.Body The input Body

func in function(body,
dt)

A callback function that updates the position of the Body on each time
step

self out physics.Body The input Body is returned as the output

Sets the position function of the body. The position function must be a function that accepts a Body and a time step value and
at some point calls body:updatePosition to update the position of the body.

Returns the Body.

.Introduced in platform.apiLevel = '2.0'

19.4.26 setTorque

self = physics.Body:setTorque(torque)

Parameter Type Description
self in physics.Body The input Body

torque in number The torque of the Body

self out physics.Body The input Body is returned as the output

Updates the torque on the body. Torque is a numeric magnitude.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.27 setVel

self = physics.Body:setVel(vector)

Parameter Type Description
self in physics.Body The input Body

vector in physics.Vect The velocity vector of the Body

self out physics.Body The input Body is returned as the output

Updates the velocity of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.28 setVelocityFunc

self = physics.Body:setVelocityFunc(func)

Parameter Type Description
self in physics.Body The input Body

func in function(body, grav,
damping, dt)

A callback function that updates the ve- locity of the Body on
each time step

self out physics.Body The input Body is returned as the output

Sets the velocity function of the body. The velocity function must be a function that accepts a Body, a gravity vector, a numeric
damping factor, and a time step value. The function should call body:updateVelocity to adjust the velocity of the body.

Returns the Body.

Listing 19.2: Example for physics.Body:setVelocityFunc()

function sampleVelocityFunc(body, gravity, damping, dt)
local pos = body:pos()
local sqdist = pos:lengthsq()
local g = pos:mult(-GravityStrength /

Chapter 19 Physics Library 71

72 Chapter 19 Physics Library

(sqdist * math.sqrt(sqdist)))
 body:updateVelocity(g, damping, dt)
end

body:setVelocityFunc(sampleVelocityFunc)

Introduced in platform.apiLevel = '2.0'

19.4.29 setVLimit

self = physics.Body:setVLimit(limit)

Parameter Type Description
self in physics.Body The input Body

limit in number The maximum speed of the Body

self out physics.Body The input Body is returned as the output

Sets the limit for the maximum speed of the body.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.30 setWLimit

self = physics.Body:setWLimit(limit)

Parameter Type Description
self in physics.Body The input Body

limit in number The maximum angular velocity of the Body

self out physics.Body The input Body is returned as the output

Updates the limit of the angular velocity of the body. Angular velocity is in radians per unit time.

Returns the Body.

Introduced in platform.apiLevel = '2.0'

19.4.31 sleep

self = physics.Body:sleep()

Parameter Type Description
self in physics.Body The input Body

bool out physics.Body The input Body is returned as the output

Puts the Body to sleep.

Info

See http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for an explanation of sleeping bodies.

Note

The body must be added to a Space before it can be put to sleep.

Calling this function within a query or callback is not allowed.

Introduced in platform.apiLevel = '2.0'

http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

19.4.32 sleepWithGroup

self = physics.Body:sleepWithGroup([group])

Parameter Type Description
self in physics.Body The input Body

group in physics.Body A sleeping body. If this parameter is not supplied, a new group is created

bool out physics.Body The input Body is returned as the output

Puts the Body to sleep and adds it to a group of other sleeping bodies.

Info

See http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for an explanation of this routine.

Note

The body must be added to a Space before it can be put to sleep.

Calling this function within a query or callback is not allowed.

This routine will raise an exception if group is not sleeping.

Introduced in platform.apiLevel = '2.0'

19.4.33 torque

t = physics.Body:torque()

Parameter Type Description
self in physics.Body The input Body

torque out number The torque on the Body

Returns the torque on the Body.

Introduced in platform.apiLevel = '2.0'

19.4.34 updatePosition

physics.Body:updatePosition(dt)

Parameter Type Description
self in physics.Body The input Body

dt out number The time interval in seconds

Updates the position of the body using Euler integration

Info

See http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for an explanation of this routine.

Introduced in platform.apiLevel = '2.0'

19.4.35 updateVelocity

physics.Body:updateVelocity(grav, damp, dt)

Chapter 19 Physics Library 73

http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/
http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

74 Chapter 19 Physics Library

Parameter Type Description
self in physics.Body The input Body

grav in physics.Vect The force of gravity

damp in physics.Vect The damping factor

dt out physics.Vect The time interval in seconds

Updates the velocity of the body using Euler integration.

Info

See http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for an explanation of this routine.

Introduced in platform.apiLevel = '2.0'

19.4.36 vel

vvel = physics.Body:vel()

Parameter Type Description
self in physics.Body The input Body

vvel out physics.Vect The velocity of the Body

Returns the vector velocity of the body.

Introduced in platform.apiLevel = '2.0'

19.4.37 vLimit

vmax = physics.Body:vLimit()

Parameter Type Description
self in physics.Body The input Body

vmax out number The maximum speed of the Body

Returns the speed limit of the body.

Introduced in platform.apiLevel = '2.0'

19.4.38 wLimit

wmax = physics.Body:wLimit()

Parameter Type Description
self in physics.Body The input Body

wmax out number The maximum angular velocity of the Body in radians per unit time

Returns the angular velocity limit of the body. The angular velocity is in radians per unit time.

Introduced in platform.apiLevel = '2.0'

19.4.39 world2Local

lvec = physics.Body:world2Local(wvec)

http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Parameter Type Description
self in physics.Body The input Body

wvec in physics.Vect A vector in world coordinates

lvec out physics.Vect A vector relative to the position of the Body

Converts wvec from world coordinates to body-relative coordinates. Returns the converted vector.

Introduced in platform.apiLevel = '2.0'

19.5 Shapes
Shapes contain the surface properties of an object such as how much friction or elasticity it has. All collision shapes implement
the following accessor routines.

19.5.1 BB

bb = physics.Shape:BB()

Parameter Type Description
self in physics.Shape The input Shape

bb out physics.BB Bounding box of the Shape

Returns the bounding box of the shape.

Introduced in platform.apiLevel = '2.0'

19.5.2 body

body = physics.Shape:body()

Parameter Type Description
self in physics.Shape The input Shape

body out physics.Body The Body associated with the Shape

Returns the body attached to the shape. If the shape is static, then it will return nil.

Introduced in platform.apiLevel = '2.0'

19.5.3 collisionType

coll = physics.Shape:collisionType()

Parameter Type Description
self in physics.Shape The input Shape

coll out number The programmer-assigned integer collision type

Returns the integer collision type of the Shape.

Introduced in platform.apiLevel = '2.0'

19.5.4 data

obj = physics.Shape:data()

Chapter 19 Physics Library 75

76 Chapter 19 Physics Library

Parameter Type Description
self in physics.Shape The input Shape

obj out Lua object The programmer-assigned data object assigned to this Shape

Returns the contents of the programmer data field of the Shape.

Introduced in platform.apiLevel = '2.0'

19.5.5 friction

f = physics.Shape:friction()

Parameter Type Description
self in physics.Shape The input Shape

f out number The coefficient of friction for this Shape

Returns the friction coefficient of the shape.

Introduced in platform.apiLevel = '2.0'

19.5.6 group

g = physics.Shape:group()

Parameter Type Description
self in physics.Shape The input Shape

g out number The assigned group number

Returns the group number of the shape.

Note

The group number is converted to a positive whole number when stored.

Introduced in platform.apiLevel = '2.0'

19.5.7 layers

layers = physics.Shape:layers()

Parameter Type Description
self in physics.Shape The input Shape

layers out number A bitmap of the layers this shape occupies

Returns the bitmap of layers the shape occupies.

Introduced in platform.apiLevel = '2.0'

19.5.8 rawBB

bb = physics.Shape:rawBB()

Parameter Type Description
self in physics.Shape The input Shape

bb out physics.BB The bounding box of the Shape

Returns the bounding box of the shape. Only valid after a call to physics.Shape:BB() or physics.Space:step().

Introduced in platform.apiLevel = '2.0'

19.5.9 restitution

r = physics.Shape:restitution()

Parameter Type Description
self in physics.Shape The input Shape

r out number The restitution of the Shape

Returns the restitution (or elasticity) of the shape.

Introduced in platform.apiLevel = '2.0'

19.5.10 sensor

s = physics.Shape:sensor()

Parameter Type Description
self in physics.Shape The input Shape

s out boolean True if the Shape is a sensor

Returns true if the shape is a sensor.

Introduced in platform.apiLevel = '2.0'

19.5.11 setCollisionType

self = physics.Shape:setCollisionType(collisionType)

Parameter Type Description
self in physics.Shape The input Shape

collisionType in number Programmer-defined type of collision

self out physics.Shape The input Shape is returned as the output

Assigns a collision type (an integer value of your choosing) to the shape. It is used to determine which handler to call when a
collision occurs. Returns self.

Introduced in platform.apiLevel = '2.0'

19.5.12 setData

self = physics.Shape:setData(obj)

Parameter Type Description
self in physics.Shape The input Shape

obj in Lua object An object defined by the programmer

self out physics.Shape The input Shape is returned as the output

Sets the programmer data field of the Shape. The programmer can store any Lua object in this field. Returns self.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 77

78 Chapter 19 Physics Library

19.5.13 setFriction

self = physics.Shape:setFriction(f)

Parameter Type Description
self in physics.Shape The input Shape

f in number Coefficient of friction for the surface of the Shape

self out physics.Shape The input Shape is returned as the output

Sets the friction coefficient for the shape. Returns self.

Note

May not behave as expected for f larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

19.5.14 setGroup

self = physics.Shape:setGroup(group)

Parameter Type Description
self in physics.Shape The input Shape

group in number Group number

self out physics.Shape The input Shape is returned as the output

Sets the group (a number defined by the programmer) of the shape. Shapes in the same group do not generate collisions.
Returns self.

Note

The group number is converted to a positive whole number when stored.

Introduced in platform.apiLevel = '2.0'

19.5.15 setLayers

self = physics.Shape:setLayers(layers)

Parameter Type Description
self in physics.Shape The input Shape

layers in number A bitmap of integer layer numbers. This implementation permits 32 layers

self out physics.Shape The input Shape is returned as the output

Sets the layers that the shape inhabits. Shapes only collide if they are in the same layer. layers is an integer bitmap of all the
layers that the shape occupies. Returns self.

Introduced in platform.apiLevel = '2.0'

19.5.16 setRestitution

self = physics.Shape:setRestitution(r)

Parameter Type Description
self in physics.Shape The input Shape

r in number The new value for the shape’s restitution

Parameter Type Description
self out physics.Shape The input Shape is returned as the output

Sets the restitution (or elasticity) of the shape. A value of 0.0 gives no bounce and a value of 1.0 gives a perfect bounce.
Returns self.

Note

May not behave as expected for r larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

19.5.17 setSensor

elf = physics.Shape:setSensor(bool)

Parameter Type Description
self in physics.Shape The input Shape

bool in boolean True if the shape is a sensor

self out physics.Shape The input Shape is returned as the output

Determines if the shape is a sensor (true) or not (false). Sensors call collision handlers but do not generate collisions. Returns
self.

Introduced in platform.apiLevel = '2.0'

19.5.18 setSurfaceV

self = physics.Shape:setSurfaceV(vel)

Parameter Type Description
self in physics.Shape The input Shape

velgroup in physics.Vect The new vector for the surface velocity

self out physics.Shape The input Shape is returned as the output

Sets the surface velocity of the shape. Returns self.

Note

The group number is converted to a positive whole number when stored.

Introduced in platform.apiLevel = '2.0'

19.5.19 surfaceV

sv = physics.Shape:surfaceV()

Parameter Type Description
self in physics.Shape The input Shape

sv out physics.Vect The surface velocity of the Shape

Returns the surface velocity vector of the shape.

Introduced in platform.apiLevel = '2.0'

19.6 Circle Shapes
A CircleShape is a subclass of Shape. Its type is TI.cpCircleShape.

Chapter 19 Physics Library 79

80 Chapter 19 Physics Library

19.6.1 CircleShape

cs = physics.CircleShape(body, radius, offset)

Parameter Type Description
body in physics.Body A Body or nil

radius in number The radius of the circle

offset in physics.Vect The offset of the circle from the Body

cs out physics.CircleShape A new CircleShape

Returns a new CircleShape with the given body, radius, and offset vector from the body’s center of gravity in body-local
coordinates. Specify nil for the body to use the space’s static body.

Introduced in platform.apiLevel = '2.0'

19.6.2 offset

ovec = physics.CircleShape:offset()

Parameter Type Description
self in physics.CircleShape The input CircleShape

ovec out physics.Vect The offset of the shape from the Body

Returns the offset vector of the shape from the body’s center of gravity.

Introduced in platform.apiLevel = '2.0'

19.6.3 radius

r = physics.CircleShape:radius()

Parameter Type Description
self in physics.CircleShape The input CircleShape

r out number The radius of the shape

Returns the radius of the shape.

Introduced in platform.apiLevel = '2.0'

19.7 Polygon Shapes
Polygon shapes are bounded by a set of line segments. The enclosed area of the polygon must be convex and the vertices must
be defined in counterclockwise order. Polygon shapes are of type TI.cpPolyShape.

19.7.1 PolyShape

ps = physics.PolyShape(body, vertices, offset)

Parameter Type Description
body in physics.Body A Body or nil

vertices in {physics.Vect} The list of vertices that define the boundaries of the
polygon defined in counterclockwise order

offset in physics.Vect The offset of the PolyShape from the Body

ps out physics.PolyShape A new PolyShape

Returns a new PolyShape with the given body, table of vertices, and offset from the body’s center of gravity. Specify nil for the
body to use the space’s static body.

Introduced in platform.apiLevel = '2.0'

19.7.2 numVerts

nv = physics.PolyShape:numVerts()

Parameter Type Description
self in physics.PolyShape The input PolyShape

nv out number The number of vertices in the PolyShape

Returns the number of vertices in the table of polygon vertices.

Introduced in platform.apiLevel = '2.0'

19.7.3 points

points = physics.PolyShape:points()

Parameter Type Description
self in

physics.PolyShape
The input PolyShape

points out {physics.Vect} A table of vertices that define the boundary of the polygon. The vertices
are translated to the polygon’s current
world coordinates

Returns a copy of the table of vertices defining the bounds of the polygon. The vertices are translated to the polygon’s current
world coordinates.

Note

When a PolyShape has not been added to a Space, it has no world coordinates. In this case, each vertex returned by
physics.PolyShape:points() will have x and y equal to 0.

Introduced in platform.apiLevel = '2.0'

19.7.4 vert

v = physics.PolyShape:vert(n)

Parameter Type Description
self in

physics.PolyShape
The input PolyShape

n in number Index of requested vertex inside the table of vertexes de- scribing the
polygon

v out physics.Vect The nth vertex of the polygon. The coordinates of the vector are relative
to the shape’s Body

Returns vertex number n of the table of vertices defining the bounds of the polygon. If the shape is static, then the vertex
values are in world coordinates, otherwise the vertex coordiates are relative to the shape’s body. Returns nil if n is less than 1
or greater than the number of vertices in the polygon.

Introduced in platform.apiLevel = '2.0'

19.8 Segment Shapes
A segment shape is dened by two end points and a radius. Its type is TI.cpSegmentShape.

Chapter 19 Physics Library 81

82 Chapter 19 Physics Library

19.8.1 SegmentShape

ss = physics.SegmentShape(body, a, b, radius)

Parameter Type Description
body in physics.Body A Body or nil

a in physics.Vect The first end point of the segment. The end point is in coordinates
relative to the Body

b in physics.Vect The second end point of the segment relative to the
Body

radius in number The distance of the border of the segment from the line between
the end points of the segment

ss out
physics.SegmentShape

A new SegmentShape

Returns a new SegmentShape with end point vectors a and b. radius defines the thickness of the segment.

Introduced in platform.apiLevel = '2.0'

19.8.2 a

avec = physics.SegmentShape:a()

Parameter Type Description
self in physics.SegmentShape The input SegmentShape

avec out physics.Vect The first end point of the segment

Returns the a vector defining one of the end points of the segment.

Introduced in platform.apiLevel = '2.0'

19.8.3 b

bvec = physics.SegmentShape:b()

Parameter Type Description
self in physics.SegmentShape The input SegmentShape

bvec out physics.Vect The second end point of the segment

Returns the b vector defining one of the end points of the segment.

Introduced in platform.apiLevel = '2.0'

19.8.4 normal

nvec = physics.SegmentShape:normal()

Parameter Type Description
self in physics.SegmentShape The input SegmentShape

nvec out physics.Vect The unit normal vector of the segment

Returns the computed unit normal vector to the segment.

Introduced in platform.apiLevel = '2.0'

19.8.5 radius

r = physics.SegmentShape:radius()

Parameter Type Description
self in physics.SegmentShape The input SegmentShape

r out number The radius of the segment

Returns the radius of the segment.

Introduced in platform.apiLevel = '2.0'

19.9 Spaces
A physics Space is the basic unit of simulation.

19.9.1 Space

s = physics.Space()

Parameter Type Description
s out physics.Space A new simulation Space

Returns a new physics simulation Space.

Introduced in platform.apiLevel = '2.0'

19.9.2 addBody

self = physics.Space:addBody(body)

Parameter Type Description
self in physics.Space The input simulation Space

body in physics.Body Adds the Body to the simulation Space

self out physics.Space The input Space is returned as the output

Adds a Body to the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

19.9.3 addConstraint

self = physics.Space:addConstraint(constraint)

Parameter Type Description
self in physics.Space The input simulation Space

constraint in physics.Constraint Adds a Constraint to the simulation Space

self out physics.Space The input Space is returned as the output

Adds a Constraint to the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 83

84 Chapter 19 Physics Library

19.9.4 addCollisionHandler

self = physics.Space:addCollisionHandler(collisionTypeA,collisionTypeB,
 callbacksTable)

Parameter Type Description
self in physics.Space The input simulation Space

collisionTypeA in number Type of first collision

collisionTypeB in number Type of second collision

callbacksTable in table of functions A table of functions to call during collision detection and handling

self out physics.Space The input Space is returned as the output

Registers a table of callback functions to handle collisions between shapes of collisionTypeA and shapes of collisionTypeB.
Listing 19.3 shows the form of the callbacksTable.

Listing 19.3: The Form of the Callback Table for physics.Space:addCollisionHandler()

{
 begin = function(arbiter, space, callbacksTable) ... end,
 preSolve = function(arbiter, space, callbacksTable) ... end,
 postSolve = function(arbiter, space, callbacksTable) ... end,
 separate = function(arbiter, space, callbacksTable) ... end
}

If the begin handler or preSolve handler return false, further collision calculations are bypassed. If they return true, the collision
processing proceeds as normal.

It is not necessary to provide handlers for all callback table entries. Default handling will be provided for unspecified handlers.

Returns self.

See http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/ for an explanation of collision processing and
collision handler callbacks.

One important point to note is that these callback handlers must not add or remove Bodies, Shapes, or Constraints from the
Space

See the post-step callback functions for the right way to remove (or add) objects as the result of a collision.

Introduced in platform.apiLevel = '2.0'

19.9.5 addPostStepCallback

self = physics.Space:addPostStepCallback(body|shape|constraint,
function(space, object)
...end)

Parameter Type Description
self in physics.Space The input simulation Space

body or shape
or constraint

in physics.Body or
physics.Shape or
physics.Constraint

A simulation object that will receive attention after the
simulation step

function in function(space, object) The callback function to run against the simula- tion
object at the end of the simulation step

self out physics.Space The input Space is returned as the output

Adds a callback function to be called when the current step is finished. One callback may be registered per Body, Shape, or
Constraint. Only the first callback for a given object is registered. Any attempt to register another callback for the same object
is ignored.

Returns self.

http://chipmunk-physics.net/release/Chipmunk-5.x/Chipmunk-5.3.4-Docs/

Introduced in platform.apiLevel = '2.0'

19.9.6 addShape

self = physics.Space:addShape(shape)

Parameter Type Description
self in physics.Space The input simulation Space

shape in physics.Shape Adds the Shape to the simulation Space

self out physics.Space The input Space is returned as the output

Adds a Shape to the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

19.9.7 addStaticShape

self = physics.Space:addStaticShape(staticShape)

Parameter Type Description
self in physics.Space The input simulation Space

staticShape in physics.Shape Adds the static Shape to the simulation Space

self out physics.Space The input Space is returned as the output

Adds a static Shape to the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

19.9.8 damping

d = physics.Space:damping()

Parameter Type Description
self in physics.Space The input simulation Space

d out number The amount of damping of the simulation Space

Introduced in platform.apiLevel = '2.0'

19.9.9 data

obj = physics.Space:data()

Parameter Type Description
self in physics.Space The input simulation Space

obj out Lua object The object associated with the Space

self out physics.Space The input Space is returned as the output

Introduced in platform.apiLevel = '2.0'

19.9.10 elasticIterations

iters = physics.Space:elasticIterations()

Chapter 19 Physics Library 85

86 Chapter 19 Physics Library

Parameter Type Description
self in

physics.Space
The input simulation Space

iters out number The number of iterations to use in the impulse solver to solve elastic
collisions

Introduced in platform.apiLevel = '2.0'

19.9.11 gravity

grav = physics.Space:gravity()

Parameter Type Description
self in physics.Space The input simulation Space

grav out physics.Vect The gravity force vector applied to all Bodies in the simulation Space.

Introduced in platform.apiLevel = '2.0'

19.9.12 idleSpeedThreshold

speed = physics.Space:idleSpeedThreshold()

Parameter Type Description
self in physics.Space The input simulation Space

speed out number Threshold speed

Introduced in platform.apiLevel = '2.0'

19.9.13 iterations

iters = physics.Space:iterations()

Parameter Type Description
self in

physics.Space
The input simulation Space

iters out number The number of iterations the solver takes to update one step of the
simulation

Introduced in platform.apiLevel = '2.0'

19.9.14 rehashShape

self = physics.Space:rehashShape(shape)

Parameter Type Description
self in physics.Space The input simulation Space

shape in shape The shape to rehash

self out physics.Space The input Space is returned as the output

Update an individual static shape that has moved. Returns self.

Introduced in platform.apiLevel = '2.0'

19.9.15 rehashStatic

self = physics.Space:rehashStatic()

Parameter Type Description
self in physics.Space The input simulation Space

self out physics.Space The input Space is returned as the output

Rehashes the shapes in the static spatial hash. You must call this if you move any static shapes or Chipmunk will not update
their collision detection data.

Returns self..

Introduced in platform.apiLevel = '2.0'

19.9.16 removeBody

self = physics.Space:removeBody(body)

Parameter Type Description
self in physics.Space The input simulation Space

body in physics.Body A Body to remove from the simulation Space

self out physics.Space The input Space is returned as the output

Removes a Body from the Space. Returns self..

Introduced in platform.apiLevel = '2.0'

19.9.17 removeConstraint

self = physics.Space:removeConstraint(constraint)

Parameter Type Description
self in physics.Space The input simulation Space

constraint in physics.Constraint A Constraint to remove from the simulation Space

self out physics.Space The input Space is returned as the output

Removes a Constraint from the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

19.9.18 removeShape

self = physics.Space:removeShape(shape)

Parameter Type Description
self in physics.Space The input simulation Space

shape in physicsShape A Shape to remove from the simulation Space

self out physics.Space The input Space is returned as the output

Removes a Shape from the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 87

88 Chapter 19 Physics Library

19.9.19 removeStaticShape

physics.Space:removeStaticShape(staticShape)

Parameter Type Description
self in physics.Space The input simulation Space

staticShape in physicsShape A static Shape to remove from the simulation Space

self out physics.Space The input Space is returned as the output

Removes a static Shape from the Space. Returns self.

Introduced in platform.apiLevel = '2.0'

19.9.20 resizeActiveHash

self = physics.Space:resizeActiveHash(dim, count)

Parameter Type Description
self in physics.Space The input simulation Space

dim in number The length of one side of a hash cell. Default is 100 count

count in number The number of cells in the hash table. Default is 1000

self out physics.Space The input Space is returned as the output

The spatial hash of active Shapes can be tuned to improve collision detection. dim establishes
the size of a hash cell (default 100), and count sets the number of hash cells (default 1000). dim should approximate the side
length of a typical Shape. A good rule of thumb is to set count to about ten times the number of Shapesin the space.

.Introduced in platform.apiLevel = '2.0'

19.9.21 resizeStaticHash

self = physics.Space:resizeStaticHash(dim, count)

Parameter Type Description
self in physics.Space The input simulation Space

dim in number The length of one side of a hash cell. Default is 100 count

count in number The number of cells in the hash table. Default is 1000

self out physics.Space The input Space is returned as the output

This routine configures the spatial hash of static Shapes. Configure this similarly to resizeActiveHash but for static Shapes.

.Introduced in platform.apiLevel = '2.0'

19.9.22 setDamping
Damping drains speed from bodies in the simulation. A value of 0.9 means that each body will lose 10% of its speed per
second. Defaults to 1. This value can be overridden on a per body basis.

self = physics.Space:setDamping(d)

Parameter Type Description
self in physics.Space The input simulation Space

d in number The new amount of damping for the simulation Space

self out physics.Space The input Space is returned as the output

Amount of viscous damping to apply to the Space.

Note

May not behave as expected for d larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

19.9.23 setData

self = physics.Space:setData(obj)

Parameter Type Description
self in physics.Space The input simulation Space

obj in Lua object The data object to be sent

self out physics.Space The input Space is returned as the output

The programmer can store any Lua object in this field.

Introduced in platform.apiLevel = '2.0'

19.9.24 setElasticIterations

self = physics.Space:setElasticIterations(iters)

Parameter Type Description
self in

physics.Space
The input simulation Space

iters in number The number of iterations to use in the impulse solver to solve elastic
collisions. Defaults to 0

self out
physics.Space

The input Space is returned as the output

Introduced in platform.apiLevel = '2.0'

19.9.25 setGravity

self = physics.Space:setGravity(grav)

Parameter Type Description
self in

physics.Space
The input simulation Space

grav in
physics.Vect

The gravity force vector applied to all Bodies in the simula- tion Space.
Defaults to physics.Vect(0, 0)

self out
physics.Space

The input Space is returned as the output

Global gravity applied to the Space. Can be overridden on a per body basis by writing custom integration functions

Introduced in platform.apiLevel = '2.0'

19.9.26 setIdleSpeedThreshold

self = physics.Space:setIdleSpeedThreshold(speed)

Chapter 19 Physics Library 89

90 Chapter 19 Physics Library

Parameter Type Description
self in physics.Space The input simulation Space

speed in number Threshold speed

self out physics.Space The input Space is returned as the output

The idleSpeedThreshold is the speed below which a body is considered to be idle. This value is used to determine when a body
can be put to sleep.

Introduced in platform.apiLevel = '2.0'

19.9.27 setIterations

self = physics.Space:setIterations(iters)

Parameter Type Description
self in physics.Space The input simulation Space

iters in number Number of iterations to refine the accuracy of the solver. De- fault is 10

self out physics.Space The input Space is returned as the output

This value allows the programmer to control the accuracy of the solver. Default is 10.

Introduced in platform.apiLevel = '2.0'

19.9.28 setSleepTimeThreshold

self = physics.Space:setSleepTimeThreshold(sleep)

Parameter Type Description
self in

physics.Space
The input simulation Space

sleep in number The amount of time (seconds) below which time if a Shape has not moved, it
is put to sleep

self out
physics.Space

The input Space is returned as the output

Sleep time threshold is used to calculate when a Body can be put to sleep

Introduced in platform.apiLevel = '2.0'

19.9.29 sleepTimeThreshold

sleep = physics.Space:sleepTimeThreshold()

Parameter Type Description
self in physics.Space The input simulation Space

sleep out number The threshold time used to determine when a Shape can be put to sleep

Introduced in platform.apiLevel = '2.0'

19.9.30 step

self = physics.Space:step(dt)

Parameter Type Description
self in physics.Space The input simulation Space

dt in number The length of time (seconds) of one step of the simulation

self out physics.Space The input Space is returned as the output

Updates the Space for the given time step dt. A xed time step is recommended and increases the eciency of the contact
persistence, requiring an order of magnitude fewer iterations and lower CPU usage.

Returns self.

Introduced in platform.apiLevel = '2.0'

19.10 Constraints
All Constraints share common accessors.

Accessors Type Description
bodyA physics.Body The first Body that the Constraint acts on

bodyB physics.Body The second Body that the Constaint acts on

setBiasCoef,
biasCoef

number The fraction of error corrected each step of the simulation. Defaults to 0.1.
May not behave as expected for numbers larger than 1.0 or less than 0.

setData,
data

Lua object A programmer-defined object

impulse number Calculated impulse applied by the Constraint in the last simulation step.
To convert this to the magnitude of the force, divide by the time step
passed to physics.Space:step()

setMaxBias,
maxBias

number Maximum speed the Constraint can apply error correction.
Defaults to INFINITY

setMaxForce,
maxForce

number Magnitude of maximum force the Constraint can use to act on the two
Bodies.
Defaults to INFINITY

19.10.1 Damped Rotary Spring

spring = physics.DampedRotarySpring(a, b, restAngle,
 stiffness, damping)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

restAngle in number Relative angle in radians that the Bodies want to maintain

stiffness in number The spring constant

damping in numbe How soft to make the damping of the spring

spring out physics.DampedRotarySpring New DampedRotarySpring

Like a damped spring, but works in an angular fashion. restAngle is the relative angle in radians that the Bodies want to have,
stiffness and damping work basically the same as on a damped spring.

Chapter 19 Physics Library 91

92 Chapter 19 Physics Library

Accessors Type
setRestAngle, restAngle number

setStiffness, stiffness number

setDamping, damping number

Introduced in platform.apiLevel = '2.0'

19.10.2 Damped Spring

spring = physics.DampedSpring(a, b, anchr1, anchr2, restLength,
 stiffness, damping)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

anchr1 in physics.Vect Anchor point to first Body

anchr2 in physics.Vect Anchor point to second Body

restLength in number The distance the spring wants to maintain between its Bodies

stiffness in number The spring constant

damping in numbe How soft to make the damping of the spring

spring out physics.DampedSpring New DampedSpring

Defined much like a SlideJoint. restLength is the distance the spring wants to be, stiffness is the spring constant, and damping
is how soft to make the damping of the spring.

Accessors Type
setAnchr1, anchr1 physics.Vect

setAnchr2, anchr2 physics.Vect

setRestLength, restLength number

setStiness, stiness number

setDamping, damping number

Introduced in platform.apiLevel = '2.0'

19.10.3 Gear Joint

joint = physics.GearJoint(a, b, phase, ratio)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

phase in number The initial angular offset in radians of the two Bodies

ratio in number Ratio of velocities between the two Bodies

joint out physics.GearJoint New GearJoint

Keeps the angular velocity ratio of a pair of Bodies constant. ratio is always measured in absolute terms. phase is the initial
angular offset of the two bodies.

Accessors Type
setPhase, phase number

setRatio, ratio number

Introduced in platform.apiLevel = '2.0'

19.10.4 Groove Joint

joint = physics.GrooveJoint(a, b, grooveA, grooveB, anchr2)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

grooveA in physics.Vect One end point of the groove

grooveB in physics.Vect The other end point of the groove

anchr2 in physics.Vect The pivot point of Body b

joint out physics.GrooveJoint New GrooveJoint

The groove goes from grooveA to grooveB on Body a, and the pivot is attached to anchr2 on
Body b. All coordinates are body local.

Accessors Type
setAnchr2, anchr2 physics.Vect

setGrooveA, grooveA physics.Vect

setGrooveB, grooveB physics.Vect

grooveN physics.Vect

Introduced in platform.apiLevel = '2.0'

19.10.5 Pin Joint

joint = physics.PinJoint(a, b, anchr1, anchr2)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

anchr1 in physics.Vect The anchor point on Body a

anchr2 in physics.Vect The anchor point on Body b

joint out physics.PinJoint New PinJoint

a and b are the two bodies to connect, and anchr1 and anchr2 are the anchor points on those bodies. The distance between the
two anchor points is measured when the joint is created. If you want to set a specific distance, use the setter function to
override it.

Accessors Type
setAnchr1, anchr1 physics.Vect

setAnchr2, anchr2 physics.Vect

setDist, dist number

Introduced in platform.apiLevel = '2.0'

19.10.6 Pivot Joint

joint = physics.PivotJoint(a, b, pivot)
joint = physics.PivotJoint(a, b, anchr1, anchr2)

Chapter 19 Physics Library 93

94 Chapter 19 Physics Library

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

pivot in physics.Vect Point of pivot between the two Bodies

anchr1 in physics.Vect The anchor point on Body a

anchr2 in physics.Vect The anchor point on Body b

joint out physics.PivotJoint New PivotJoint

a and b are the two bodies to connect, and pivot is the point in world coordinates of the pivot. Because the pivot location is
given in world coordinates, you must have the bodies moved into the correct positions already. Alternatively you can specify the
joint based on a pair of anchor points, but make sure you have the bodies in the right place as the joint will fix itself as soon as
you start simulating the Space.

Accessors Type
setAnchr1, anchr1 physics.Vect

setAnchr2, anchr2 physics.Vect

Introduced in platform.apiLevel = '2.0'

19.10.7 Ratchet Joint

joint = physics.RatchetJoint(a, b, phase, ratchet)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

phase in number Initial offset in radians

ratchet in number The distance in radians between clicks of the ratchet

joint out physics.RatchetJoint New RatchetJoint

Works like a socket wrench. ratchet is the distance between clicks, phase is the initial offset to use when deciding where the
ratchet angles are.

Accessors Type
setAngle, angle number

setphase, phase number

setRatchet, ratchet number

Introduced in platform.apiLevel = '2.0'

19.10.8 Rotary Limit Joint

joint = physics.RotaryLimitJoint(a, b, min, max)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

min in number The minimum angular distance in radians

max in number The maximum angular distance in radians

joint out physics.RotaryLimitJoint New RotaryLimitJoint

Constrains the relative rotations of two bodies. min andmax are the angular limits in radians. It is implemented so that it is
possible for the range to be greater than a full revolution.

Accessors Type
setMin, min number

setMax, max number

Introduced in platform.apiLevel = '2.0'

19.10.9 Simple Motor

motor = physics.SimpleMotor(a, b, rate)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

rate in number The relative angular velocity

motor out physics.SimpleMotor New SimpleMotor

Keeps the relative angular velocity of a pair of bodies constant. rate is the desired relative angular velocity.

Accessors Type
setRate, rate number

Introduced in platform.apiLevel = '2.0'

19.10.10 Slide Joints

joint = physics.SlideJoint(a, b, anchr1, anchr2, min, max)

Parameter Type Description
a in physics.Body First Body

b in physics.Body Second Body

anchr1 in physics.Vect Anchor point to first Body

anchr2 in physics.Vect Anchor point to second Body

min in number Minimum distance between Bodies

max in number Maximum distance between Bodies

joint out physics.SlideJoint New SlideJoint

a and b are the two bodies to connect, anchr1 and anchr2 are the anchor points on those bodies, andmin andmax define the
allowed distances of the anchor points.

Accessors Type
setAnchr1, anchr1 physics.Vect

setAnchr2, anchr2 physics.Vect

setMin, min number

setMax, max number

Introduced in platform.apiLevel = '2.0'

19.11 Arbiters and Collision Pairs
The Arbiter class encapsulates information about each pair of collisions.

Chapter 19 Physics Library 95

96 Chapter 19 Physics Library

19.11.1 #

count = #physics.Arbiter

Returns the number of contact points in this Arbiter.

Introduced in platform.apiLevel = '2.0'

19.11.2 a

shape = physics.Arbiter:a()

Parameter Type Description
self in physics.Arbiter The input Arbiter

shape out physics.Shape The first Shape in the collision pair

Returns Shape a (the first shape) in a collision pair.

Introduced in platform.apiLevel = '2.0'

19.11.3 b

shape = physics.Arbiter:b()

Parameter Type Description
self in physics.Arbiter The input Arbiter

shape out physics.Shape The second Shape in the collision pair

Returns Shape b (the second shape) in a collision pair.

Introduced in platform.apiLevel = '2.0'

19.11.4 bodies

bodyA, bodyB = physics.Arbiter:bodies()

Parameter Type Description
self in physics.Arbiter The input Arbiter

bodyA out physics.Body The first Body in the collision pair
bodyB out physics.Body The second Body in the collision pair

Returns bodyA and bodyB in the collision pair.

Introduced in platform.apiLevel = '2.0'

19.11.5 depth

d = physics.Arbiter:depth(i)

Parameter Type Description
self in physics.Arbiter The input Arbiter

i in number A contact point number

d out number The penetration depth of the ith contact point

Returns the penetration depth of the ith contact or nil if i is out of range of the number of contact points.

Introduced in platform.apiLevel = '2.0'

19.11.6 elasticity

e = physics.Arbiter:elasticity()

Parameter Type Description
self in physics.Arbiter The input Arbiter

e out number The calculated elasticity of the collision

Returns the calculated elasticity of this collision pair.

Introduced in platform.apiLevel = '2.0'

19.11.7 friction

f = physics.Arbiter:friction()

Parameter Type Description
self in physics.Arbiter The input Arbiter

f out number The calculated friction of the collision

Returns the calculated friction of this collision pair.

Introduced in platform.apiLevel = '2.0'

19.11.8 impulse

ivec = physics.Arbiter:impulse([friction])

Parameter Type Description
self in physics.Arbiter The input Arbiter

friction in boolean If true, the calculated friction is included in the calculation

ivec out physics.Vect The vector impulse applied to resolve the collision

Returns the vector impulse that was applied during this step to resolve the collision. If friction is true (default false), then the
calculated friction is taken into account.

Introduced in platform.apiLevel = '2.0'

19.11.9 isFirstContact

bool = physics.Arbiter:isFirstContact()

Parameter Type Description
self in physics.Arbiter The input Arbiter

bool out boolean True if this is the first step that the Shapes touched

Returns true if this is the first step that the Shapes touched. This information only persists until a step when the shapes are no
longer touching. Once they are no longer touching, this flag is reset.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 97

98 Chapter 19 Physics Library

19.11.10 normal

nvec = physics.Arbiter:normal(i)

Parameter Type Description
self in physics.Arbiter The input Arbiter

i in number A contact point number

nvec out physics.Vect Vector normal to the ith contact point

Returns the collision normal vector for the ith contact point. Returns nil if i is out of the range of the number of contact points.

Introduced in platform.apiLevel = '2.0'

19.11.11 point

pvec = physics.Arbiter:point(i)

Parameter Type Description
self in physics.Arbiter The input Arbiter

i in number A contact point number

pvec out physics.Vect The position of the ith contact point

Returns the position of the ith contact point. Returns nil if i is out of the range of the number of contact points.

Introduced in platform.apiLevel = '2.0'

19.11.12 setElasticity

self = physics.Arbiter:setElasticity(e)

Parameter Type Description
self in physics.Arbiter The input Arbiter

e in number Elasticity of the collision

self out physics.Arbiter The input Arbiter is returned as the output

Overrides the calculated elasticity of the collision.

Note

May not behave as expected for e larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

19.11.13 setFriction

self = physics.Arbiter:setFriction(friction)

Parameter Type Description
self in physics.Arbiter The input Arbiter

f in number Friction in the collision

self out physics.Arbiter The input Arbiter is returned as the output

Overrides the calculated friction of the collision.

Note

May not behave as expected for f larger than 1.0 or less than 0.

Introduced in platform.apiLevel = '2.0'

19.11.14 shapes

shapeA, shapeB = physics.Arbiter:shapes()

Parameter Type Description
self in physics.Arbiter The input Arbiter

shapeA out physics.Shape The first Shape in the collision

shapeB out physics.Shape The second Shape in the collision

Returns shapeA and shapeB in the order they were defined in the collision handler associated with this Arbiter.

Introduced in platform.apiLevel = '2.0'

19.11.15 totalImpulse

ivec = physics.Arbiter:totalImpulse()

Parameter Type Description
self in physics.Arbiter The input Arbiter

ivec out physics.Vect The vector impulse applied to resolve the collision

Returns the vector impulse that was applied during this step to resolve the collision.

Introduced in platform.apiLevel = '2.0'

19.11.16 totalImpulseWithFriction

ivec = physics.Arbiter:totalImpulseWithFriction()

Parameter Type Description
self in physics.Arbiter The input Arbiter

ivec out physics.Vect The vector impulse applied to resolve the collision

Returns the vector impulse that was applied during this step to resolve the collision. The calculated friction is taken into
account.

Introduced in platform.apiLevel = '2.0'

19.12 Shape Queries
19.12.1 pointQuery

bool = physics.Shape:pointQuery(point)

Parameter Type Description
self in physics.Shape The input Shape

point in physics.Vect A point

bool out boolean True if point lies within the bounds of Shape

Returns true if point lies within the Shape.

Introduced in platform.apiLevel = '2.0'

Chapter 19 Physics Library 99

100 Chapter 19 Physics Library

19.12.2 segmentQuery

info = physics.Shape:segmentQuery(vecta, vectb)

Parameter Type Description
self in physics.Shape The input Shape

vecta in physics.Vect One end point of the segment

vectb in physics.Vect The other end point of the segment

info out
physics.SegmentQueryInfo

Information about where the segment and Shape intersect. Nil if
no intersection

Checks if the line segment from vecta to vectb intersects the Shape. Returns a
SegmentQueryInfo object with the result of the query or nil if no intersection.

If a segment query starts inside of a shape then the result is somewhat undefined. Circles and polygons will not report a
collision with that shape, and segments will report an incorrect point and normal if they do detect a collision with that shape.
To get around this deficiency, use a separate point query to determine if the segment query starts inside of a shape.

See the SegmentQueryInfo methods below for helper routines to convert the results to world coordinates or absolute distance.

Introduced in platform.apiLevel = '2.0'

19.13 Space Queries
19.13.1 pointQuery

physics.Space:pointQuery(point, layers, group,
 function(shape) ... end)

Parameter Type Description
self in physics.Space The input Space

point in physics.Vect A point

layers in number A bitmap of the layers.
Match if shape.layers intersects layers

group in number The group number to check.
Match if Shape is not in group

function function(shape) A function to call providing each Shape in turn that matches the criteria

Queries the Space for all shapes that contain point and match layers but not in group. The
function is called with each matching Shape. Sensor Shapes are included.

Introduced in platform.apiLevel = '2.0'

19.13.2 pointQueryFirst

shape = physics.Space:pointQueryFirst(point, layers, group)

Parameter Type Description
self in physics.Space The input Space

point in physics.Vect A point

layers in number A bitmap of the layers.
Match if shape.layers intersects layers

group in number The group number to check.
Match if Shape is not in group

Queries Space at a point and returns the first Shape that matches the given layers and not in group. Returns nil if no Shape
was found. Sensor Shapes are ignored.

Introduced in platform.apiLevel = '2.0'

19.13.3 segmentQuery

physics.Space:segmentQuery(startvect, stopvect, layers, group,

Parameter Type Description
self in physics.Shape The input Shape

startvect in physics.Vect An end point of the segment

stopvect in physics.Vect Other end point of the segment

layers in number A bitmap of the layers.
Match if shape.layers inter- sects layers

group in number The group number to check.
Match if object is not in group

function function(shape, t,
normal)

A function to call providing each Shape in turn that matches the
criteria

Queries the Space for all Shapes that intersect the line segment from startvect to stopvect and match layers and not in group.
The function is called with each matching Shape. Sensor Shapes are included.

The callback function is called with each Shape, proportion of distance along the line segment (a fraction from 0 to 1), and the
surface normal vector of the intersection point of the Shape.

Introduced in platform.apiLevel = '2.0'

19.13.4 segmentQueryFirst

info = physics.Space:segmentQueryFirst(startvect, stopvect,layers, group)

Parameter Type Description
self in physics.Shape The input Shape

startvect in physics.Vect An end point of the segment

stopvect in physics.Vect Other end point of the segment

layers in number A bitmap of the layers.
Match if shape.layers inter- sects layers

group in number The group number to check.
Match if object is not in group

info out
physics.SegmentQueryInfo

Information about where the segment and Shape intersect. Nil if
no intersection

Queries Space along the line segment from startvect to stopvect and returns the first intersecting Shape that matches layers
and not in group. Returns a SegmentQueryInfo object with the first Shape that matches the query or nil if no intersection.

Introduced in platform.apiLevel = '2.0'

19.14 SegmentQueryInfo
A SegmentQueryInfo object is a Lua dictionary table with three fields.

Key Value
shape Shape object found in a query.

t Fractional distance (0 .. 1) from the start of the line segment to the intersection of the Shape.

n Surface normal vector of the Shape at the intersection point.

Chapter 19 Physics Library 101

102 Chapter 19 Physics Library

This object also has the following helper routines that convert information in a SegmentQueryInfo object to world coordinates
or an absolute distance along the line segment.

19.14.1 hitDist

d = SegmentQueryInfo:hitDist(startvect, stopvect)

Parameter Type Description
self in physics.SegmentQueryInfo The input SegmentQueryInfo

startvect in physics.Vect An end point of the segment

stopvect in physics.Vect Other end point of the segment

d out physics.Vect Hit distance

Returns the absolute distance where the segment first hit the Shape.

Introduced in platform.apiLevel = '2.0'

19.14.2 hitPoint

p = SegmentQueryInfo:hitPoint(startvect, stopvect)

Parameter Type Description
self in physics.SegmentQueryInfo The input SegmentQueryInfo

startvect in physics.Vect An end point of the segment

stopvect in physics.Vect Other end point of the segment

p out physics.Vect Hit point

Returns the hit point in world coordinates where the segment between startvect and stopvect
first intersects the Shape.

Introduced in platform.apiLevel = '2.0'

Chapter 20

Bluetooth® Smart Library

The Bluetooth® Smart Library enables TI-Nspire™ software running on platforms that support Bluetooth® Smart wireless
technology to connect to Bluetooth ® LE devices (Low Energy) supporting the peripheral role. As some of the communication is
asynchronous, each asynchronous function providing a result requires a callback to receive responses and events. Responses
are the asynchronously provided results values for a request and events are additional state information over a period of time,
e.g. the duration of an established connection.

20.1 Bluetooth® LE
The Bluetooth ® LE Library summarizes all generic functionality related to Bluetooth ® LE technology offered inside the TI-
Nspire™ platform.

20.1.1 addStateListener

ble.addStateListener(callback [, object])

Registers a Bluetooth® LE state-change listener callback. The registration of multiple listener callbacks at the same time is
supported. Registered listener callbacks can be removed by calling removeStateListener

Parameter Type Description
callback in function Callback to receive unsolicited events

about Bluetooth® LE state changes

object in any
(optional)

If an object is provided it will be passed as the first parameter to the specified
callback function.
The object can be of any type except nil.

Callback Function

callback([object,] state)

The callback function provided in addStateListener will be called for unsolicited Bluetooth® LE state changes. This includes
switching on/off Bluetooth ® technology or the OS resetting the Bluetooth® stack.

Parameter Type Description
object in any (optional) If an object was provided as a parameter to the function

addStateListener,
it will be passed as the first parameter to this callback function

state in ble table
constant

Please see the following section for details.

Bluetooth® LE State Constants

The constants described in the following table are part of the ble table, e.g. ble.OFF.

Name Description
ON Bluetooth® technology is switched on

OFF Bluetooth® technology is switched off. This implies that any ongoing scan has been
stopped and connected peripherals lose their connection.

Chapter 20 Bluetooth® Smart Library 103

104 Chapter 20 Bluetooth® Smart Library

Name Description
RESETTING The Bluetooth ® stack is resetting.

This is an intermittent state and an update will follow.
In this state the Lua script should release all Bluetooth® LE object references as these
objects have become invalid and cannot be used anymore.
The use of invalidated objects will cause a Lua error.

UNSUPPORTED Bluetooth® technology is not supported on this platform

Introduced in platform.apiLevel = '2.5'

20.1.2 removeStateListener

success = ble.removeStateListener(callback)

Removes a registered Bluetooth ® LE state-change listener callback which was previously registered by calling
addStateListener.

Parameter Type Description
callback in function The callback previously registered by calling addStateListener

success out boolean True if successful, otherwise false if specified listener was never added

Introduced in platform.apiLevel = '2.5'

20.1.3 pack
Note: Applies to pack and unpack.

• This function moved from ble to string.

• This is available at ble.pack and ble.unpack for apilevels 2.5 and 2.6

• Moved to string.pack string.unpack starting apilevel 2.7

Introduced in platform.apiLevel = '2.5'

20.1.4 unpack
Note: Applies to pack and unpack.

• This function moved from ble to string.

• This is available at ble.pack and ble.unpack for apilevels 2.5 and 2.6

• Moved to string.pack string.unpack starting apilevel 2.7

Introduced in platform.apiLevel = '2.5'

20.1.5 Format Specifier for pack and unpack
The sections contains explanations and additional information to the Table 20.1 . The format specifier rX, which means a
lower case r followed by a number, serves the purpose of skipping bits but does not read or write any data. Therefore the
nature of this format is different from any other format and no Lua type is associated to this format. Skipping of bits is only
needed if more than one format is used in a row which have all bit alignment.

Bit verses Octet Alignment

An octet is a set of 8 bits which is often also described as a byte. Bit alignment means that the format ”bbn” will read/write 6
bits inside of 1 octet. These formats read/write a stream of bits. If 8 bits are written, writing just continues, without respect to
octet borders. So a nibble (4 bits) can be split across 2 octets, depending on how many bits have been read/written before.

Octet alignment is different. The format ”u12u12” describes 24 bits of data and could be in theory written into 3 octets if u12
were bit aligned (”nnnnnn”3 octets). But as u12 is byte aligned the second 12 bit integer will read from/write into a new octet
so that 4 octets are used.

Now what does the format ”u12n” do? An octet-aligned format enforces octet alignment surrounding itself - it reads/writes
on the next octet border and enforces a potentially following format on a octet border as well.

Exponent

The Bluetooth ® LE specification allows exponents for integer types (1.2 ∗ 10exponent). The exponent is not encoded inside the
data itself but needs to be used on encoding and decoding of the data. This concept is known as fixed-point number format. If
an exponent is allowed for a format but no exponent is specified it defaults to 0 (100). if an exponent is specified read/write of
the format will apply the exponent automatically (”u8e1u8e−1s16e−7”). Simply add a lower case e followed by a number after
the format specifier.

Table 20.1: Format specifier for pack and unpack

Format Specifier DataType Description Lua Type Alignment Exponent
rX X number of bits skipped N/A bit N/A

b boolean boolean bit No

b2 2 bits number bit No

n 4 bits (nibble) number bit No

u8 unsigned integer 8 bits number octet Yes

u12 unsigned integer 12 bits number octet Yes

u16 unsigned integer 16 bits number octet Yes

u24 unsigned integer 24 bits number octet Yes

u32 unsigned integer 32 bits number octet Yes

u48 unsigned integer 48 bits number octet Yes

s8 signed integer 8 bits number octet Yes

s12 signed integer 12 bits number octet Yes

s16 signed integer 16 bits number octet Yes

s24 signed integer 24 bits number octet Yes

s32 signed integer 32 bits number octet Yes

s48 signed integer 48 bits number octet Yes

f IEEE-754 32-bit floating point number octet No

fl IEEE-754 64-bit floating point number octet No

S8 UTF-8 string string octet No

S16 UTF-16 string string octet No

20.2 Bluetooth® LE Central
20.2.1 startScanning

error = bleCentral.startScanning([UUID,] callback [, object])

Scans for Bluetooth® LE devices advertising a service with the given service UUID (Universal Unique Identifier) or for
Bluetooth® LE devices advertising any service if no UUID is provided. Successive calls of startScanning automatically stop
previous scans. A malformed UUID will cause a Lua error as this is an authoring error and not a run-time error..

Parameter Type Description
UUID in string

(optional)
UUID of the service searched for.
The UUID can be provided in 16- or 128-bit format.

callback in function Callback to receive asynchronously peripherals
found, one peripheral at a time

object in any
(optional)

If an object is provided it will be passed as the first parameter to the
specified callback function.

Chapter 20 Bluetooth® Smart Library 105

106 Chapter 20 Bluetooth® Smart Library

Parameter Type Description
The object can be of any type except nil.

error out string
(optional)

If successful nil is returned, an error message otherwise

Introduced in platform.apiLevel = '2.5'

Callback Function

callback([object,] peripheral, advertisementData, isConnectable, RSSI)

The callback function provided in startScanning will be called for every Bluetooth® LE device fulfilling the search criteria. The
peripheral parameter will be a peripheral object representing the found Bluetooth® LE device. The same peripheral object
might be reported more than once based on peripheral and platform behavior.

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function
startScanning, it will be passed as the first parameter to this callback
function

peripheral in
peripheral
object

One peripheral found during scanning

advertisementData in table A table containing the advertisement data of the
device..

isConnectable in boolean true if the device advertises as connectable, otherwise false

RSSI in Integer
value

The received signal strength indicator (RSSI) in dbm.

Advertisement Data Keys

The constants described in the following table are part of the ble table, e.g.

ble.AD TX POWER LEVEL.

Name Description
AD NAME Same as the device name or a shortened name. Please see subsection 20.3.1 for

peripheral:getName().

AD
MANUFACTURER
DATA

Bluetooth® technology is switched off. This implies that any A string with the first 2
octets identifying the manufacturer (see Company Identifiers.). The interpretation of
any other octet in the string is manufacturer specific.

AD SERVICE
UUIDS

A list of service UUIDs. This list might be complete or not.

AD TX POWER
LEVEL

If provided by the device, the sending power level of the device in dBm. Subtracting
the RSSI value from the power level can be used to compare the approximate distance
of different devices

Introduced in platform.apiLevel = '2.5'

Extended in platform.apiLevel = ‘2.6'

20.2.2 stopScanning

bleCentral.stopScanning()

Stops scanning for Bluetooth® LE devices.

Introduced in platform.apiLevel = '2.5'

https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers

20.2.3 isScanning

bleCentral.isScanning()

Returns true if a scan for Bluetooth® LE devices is ongoing or false otherwise.

Introduced in platform.apiLevel = '2.5'

Figure 20.1: Bluetooth® LE Scanning Procedure

20.3 Peripheral Class
20.3.1 getName

name = peripheral:getName()

Returns the name of the peripheral as a string. The peripheral name is what an Application would typically show to the user.
There is no guarantee that two different devices have different names. On the contrary two devices of the same kind and
vendor could show the same name until changed by the user. If no name is available at the point of time nil will be returned.
Changing the name for Bluetooth® LE device could be device specific.

Introduced in platform.apiLevel = '2.5'

20.3.2 getState

state = peripheral:getState()

Returns the connection state - disconnected, connecting, connected, disconnecting.

Chapter 20 Bluetooth® Smart Library 107

108 Chapter 20 Bluetooth® Smart Library

function isConnected(peripheral)
return peripheral:getState() == bleCentral.CONNECTED

end

Introduced in platform.apiLevel = '2.5'

20.3.3 connect

error = peripheral:connect([timeout,]callback [, object])

Requests connection to the Bluetooth® LE device represented by the peripheral object. The callback will be called for all events
related to the connection state of this peripheral object. An optional timeout can be provided to automatically abort the
request after the time specified. After disconnecting or after a failure during the connection procedure, the specified callback
will not be referenced anymore.

Caution

Please make sure you disconnect peripheral objects before closing the document. A simple way to do so is by calling
peripheral:disconnect() from the on.destroy() event.

Parameter Type Description
timeout in number

(optional)
If provided, connection request aborts after the specified time in seconds.
The specified time can be between 0 and 3600. 0 or less waits forever, anything
above 3600 defaults to 3600.

callback in function Callback to receive asynchronous events about the connection state

object out any
(optional)

If an object is provided it will be passed as the first parameter to the specified
callback function. The object can be of any type except nil

error out string
(optional)

If successful nil is returned, an error message otherwise

Introduced in platform.apiLevel = '2.5'

Extended in platform.apiLevel = ‘2.6'

Callback Function

callback([object,] peripheral, event [, error])

The callback function provided in peripheral:connect() will be called for every event related to the connection state between
the Bluetooth ® LE central and the peripheral. Based on whether
an object was provided in the call to connectPeripheral, the callback should have three or four parameters.

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function startScanning, it
will be passed as the first parameter to this callback function

peripheral in peripheral
object

A peripheral found during scanning

event in bleCentral
table constant

Please see the following section for details

error in string
(optional))

If successfully connected or disconnected the
parameter will be nil, an error message otherwise (unsuccessful connection
or dropped connected)

Event Constants

The constants described in the following table are part of the bleCentral table, e.g.
bleCentral.CONNECTED.

Name Description
CONNECTED The connection has been successfully established

CONNECTING
FAILED

The connect procedure failed. A new call of the connect() function is required to
retry connecting.

DISCONNECTED The connection has been successfully terminated

Introduced in platform.apiLevel = '2.5'

20.3.4 disconnect

peripheral:disconnect()

Disconnects the connection with the peripheral object. The callback provided in connectPeripheral will be called to confirm
completion of the disconnect procedure.

Introduced in platform.apiLevel = '2.5'

20.3.5 discoverServices

error = peripheral:discoverServices([UUIDs,] callback [, object])

Initiates the services discovery procedure for the peripheral object. The callback will be called once on completion of the
procedure. The discovery may complete successfully or fail.

Parameter Type Description
UUID(s) in strings

(s)
(optional)

0 to 10 UUIDs, identifying services to search for. Omit this parameter to search
for all services. A UUID can be provided in 16- or 128-bit format.

callback in
function

Callback to inform about the completion of the service discovery procedure. A
call to getServices() of the peripheral object provides the results.

object out any
(optional)

If an object is provided it will be passed as the first parameter to the specified
callback function. The object can be of any type except nil.

error out string
(optional)

If successful nil is returned, an error message otherwise

Introduced in platform.apiLevel = '2.5'

Callback Function

callback([object,] peripheral [, error])

The callback function provided in discoverServices will be called once when the services discovery procedure completes. Based
on whether an object was provided in the call to discoverServices, the callback should have two or three parameters. The error
will be nil if the procedure completed successfully. Calling getServices will retrieve the discovered services.

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function discoverServices, it will
be passed as the first parameter to this callback function

peripheral in
peripheral
object

The peripheral object offering the discovered services

error in string
(optional)
)

If successful the parameter will be nil, an error message otherwise

Introduced in platform.apiLevel = '2.5'

Chapter 20 Bluetooth® Smart Library 109

110 Chapter 20 Bluetooth® Smart Library

20.3.6 getServices

table [, error] = peripheral:getServices()

Returns a table containing the list of services discovered which can be traversed with the help of the ipairs function. An empty
table is returned if no services were discovered or if getServices gets called before the service discovery procedure completes.
In case of an error, nil is returned together with an error message.

Parameter Type Description
table out table A table containing the discovered services otherwise nil

if an error occurred

error out string (optional) If successful nil is returned, an error message otherwise

Introduced in platform.apiLevel = '2.5'

20.4 Service Class
20.4.1 getUUID

UUID = service:getUUID()

Returns the UUID of the service as string.

Introduced in platform.apiLevel = '2.5'

20.4.2 discoverCharacteristics

error = service:discoverCharacteristics([UUIDs,] callback [, object])

Initiates the characteristics discovery procedure for the service object. The callback will be called once on completion of the
procedure. The discovery may complete successfully or fail.

Parameter Type Description
UUID(s) in strings

(s)
(
optional)

0 to 10 UUIDs, identifying characteristics to search for.
Omit this parameter to search for all characteristics. A UUID can be provided in
16- or 128-bit format.

callback in
function

Callback to inform about the completion of the characteristics discovery
procedure. A call to getCharacteristics() of the service object provides the
results.

object in any
(
optional)

If an object is provided it will be passed as the first parameter to the specified
callback function. The object can be of any type except nil

error out
string
(
optional)

If successful nil is returned, an error message otherwise

Introduced in platform.apiLevel = '2.5'

Callback Function

callback([object,] service [, error])

The callback function provided in discoverCharacteristics will be called once when the characteristics discovery procedure
completes. Based on whether an object was provided in the call to discoverCharacteristics, the callback should have two or
three parameters. The error will be nil if the procedure completed successfully. Calling getCharacteristics will retrieve the
discovered characteristics..

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function discoverCharacteristics,
it will be passed as the first parameter to this callback function

service in service
object

The service object offering the discovered characteristics

error in string
(optional)
)

If successful the parameter will be nil, an error message otherwise

Introduced in platform.apiLevel = '2.5'

20.4.3 getCharacteristics

table [, error] = service:getCharacteristics()

Returns a table containing the list of characteristics discovered which can be traversed with the help of the ipairs function. An
empty table is returned if no characteristics were discovered or if getCharacteristics gets called before the characteristic
discovery procedure completes. In case of an error, nil is returned together with an error message. See discoverCharacteristics
(subsection 20.4.2).

Parameter Type Description
table out table A table containing the discovered characteristics otherwise nil if an error

occurred.

error out string
(optional)

error out string (optional) If successful nil is returned, an error message
otherwise

Introduced in platform.apiLevel = '2.5'

20.5 Characteristic Class
20.5.1 getUUID

UUID = characteristic:getUUID()

Returns the UUID of the characteristic as a string.

Introduced in platform.apiLevel = '2.5'

20.5.2 setValueUpdateListener

characteristic:setValueUpdateListener(callback [, object])

Sets or removes the value-update listener callback for read and notification updates. To remove the callback, use nil as callback
parameter. Once the listener callback is called the result can be retrieved via getValue(). This function can be called at any
time to update the value update listener callback for a discovered characteristic.

Parameter Type Description
callback in

function
The callback is called once the characteristic value is ready to be retrieved via the
getValue() function

object in any (
optional
)

If a callback is provided, optionally an object can be specified which will be passed
as the first parameter to the specified callback function. The object can be of any
type except nil.

Chapter 20 Bluetooth® Smart Library 111

112 Chapter 20 Bluetooth® Smart Library

Callback Function

callback([object,] characteristic [, error])

The callback function informs when the characteristic value is ready to be retrieved via the getValue() function. The callback
should not be used to initiate another read for the same characteristic.

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function
setValueUpdateListener, it will be passed as the first parameter to this
callback function

characteristic in
characteristic
object

The characteristic for which the value can be read

error in string
(optional))

If successful the parameter will be nil, an error message otherwise

Introduced in platform.apiLevel = '2.5'

20.5.3 setWriteCompleteListener

characteristic:setWriteCompleteListener(callback [, object])

Sets or removes the write-complete listener callback for write requests. To remove the callback, use nil as the callback
parameter. This callback is only called for write requests and not write commands. The type of the write procedure depends on
the boolean value specified when calling write. This function can be called at any time to update the write complete listener
callback for a discovered characteristic.

Parameter Type Description
callback in

function
Callback to inform about the completion of the write procedure

object in any (
optional
)

If a callback is provided, optionally an object can be specified which will be passed
as the first parameter to the specified callback function. The object can be of any
type except nil.

Callback Function

callback([object,] characteristic [, error])

The callback function will be called to confirm completion of a write request procedure.

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function
setWriteCompleteListener, it will be passed as the first parameter to this
callback function

characteristic in
characteristic
object

The characteristic for which the value was written

error in string
(optional))

If successful the parameter will be nil, an error message otherwise

Introduced in platform.apiLevel = '2.5'

20.5.4 read

error = characteristic:read()

Initiates reading the characteristics value. If a listener callback is provided with setValueUpdateListener for this characteristic
(see subsection 20.5.2) it will be called once the read operation completes and the result can be retrieved via getValue().
There is no guarantee that for every single call to the read function a dedicated call of the callback will happen. The system
may decide to combine multiple completions of read requests into a single call of the callback.

Parameter Type Description
error out string (optional) If successful nil is returned, an error message otherwise

Introduced in platform.apiLevel = '2.5'

20.5.5 setNotify

error = characteristic:setNotify(doEnable)

Enables or disables continuous notification mode for the value of the characteristic, provided the characteristic of the device
supports this feature. If true is passed, notifications get enabled, whereas false will stop notifications. The notification period,
changeability of the notification period and the method of changing the notification period is Bluetooth ® LE device specific.
The peripheral needs to be connected so that a call to setNotify can have an effect. If a listener callback is provided with
setValueUpdateListener for this characteristic (see subsection 20.5.2) it will be called when a new value can be retrieved via
getValue(). There is no guarantee that for every single response from the device a dedicated call of the callback will happen.
The system may decide to combine multiple as well as completions of read requests into a single call of the callback.

Parameter Type Description

doEnable in boolean true will enable notifications, otherwise false will stop notifications
error out string (optional) If successful nil is returned, an error message otherwise

Introduced in platform.apiLevel = '2.5'

20.5.6 getValue

value = characteristic:getValue()

Returns the Value of the characteristic as string.

Introduced in platform.apiLevel = '2.5'

20.5.7 write

error = characteristic:write(data, [isRequest])

Sets the data string attribute as the new characteristic value. Based on the supported write procedure of the device
characteristic, the form of a request or a commend might be required or not allowed. If both procedures are supported by the
device characteristic, it is an author’s choice which procedure to use. There is currently no function to retrieve the characteristic
property and it is therefore the author’s responsibility to either find out the information about the device characteristic or use
trial-and-error. A write request – as opposed to a write command – will send back an information about the success, please
see subsection 20.5.3.

Parameter Type Description
data in string Data to be written. Data with zero length is not supported.

isRequest in boolean If true a write request will be send otherwise a write command

error out string (optional) If successful nil is returned, an error message otherwise

Introduced in platform.apiLevel = '2.5'

Chapter 20 Bluetooth® Smart Library 113

Chapter 21

Asynchronous Serial Interface

The Asynchronous Serial Interface (ASI) allows Lua authors to interact with the serial ports available on the system where the
script is running. The ASI allows, through a serial interface, to perform input and output operations. The ASI is designed to be
simple and easy to use within TI-Nspire.

Scripts are able to scan ports available in the system and connect to them. One script can be connected to multiple ports. One
port can be connected only to one script. Multiple scripts can be connected to multiple ports within the same document. If
more than one script needs to be connected to the same port, it is possible to disconnect from one script and then connect
from the other script; for instance, by leveraging on.loseFocus() and on.getFocus() event handlers.

21.1 require 'asi'
Loads and initializes the ASI library.

21.2 addStateListener
error = asi.addStateListener(asiStateCallback [, object])

Registers an ASI state-change listener callback. The registration of multiple listener callbacks at the same time is supported.
Registered listener callbacks can be removed by calling removeStateListener.

Parameter Type Description
asiStateCallback in function Callback to receive events about ASI state changes.

object in any
(optional)

If an object is provided, it will be passed as the first parameter to
the specified callback function.
The object can be of any type except nil.

error out string
(optional)

If successful nil is returned, an error message otherwise.

Introduced in platform.apiLevel = '2.7'.

Callback Function

asiStateCallback ([object,] state)

The callback function provided in addStateListener will be called for ASI state changes.

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function addStateListener, it
will be passed as the first parameter to this callback function.

state in asi table
constant

The current ASI state (please see table below).

ASI State Constants

Name Description
asi.ON ASI has started and is ready.

Chapter 21 Asynchronous Serial Interface 114

115 Chapter 21 Asynchronous Serial Interface

Name Description
asi.STARTING ASI is starting.

asi.UNSUPPORTED ASI is not supported on this platform.

Introduced in platform.apiLevel = '2.7'.

21.3 removeStateListener
success = asi.removeStateListener(asiStateCallback)

Removes a registered ASI state-change listener callback which was previously registered by calling addStateListener.

Parameter Type Description
asiStateCallback in function The callback previously registered by calling addStateListener.

success out
boolean

If successful true is returned; false if the specified listener was never
added.

Introduced in platform.apiLevel = '2.7'.

21.4 isScanning
asi.isScanning()

Returns true if a scan for ASI ports is ongoing or false otherwise.

Introduced in platform.apiLevel = '2.7'.

21.5 startScanning
error = asi.startScanning(portFoundCallback [, object])

Scans for ASI ports. A second call to startScanning while already scanning does not reset the process. If a rescan is desired, call
stopScanning first and then startScanning to reset the process.

Parameter Type Description
portFoundCallback in function Callback to receive ports found, one call per port.

object in any
(optional)

If an object is provided, it will be passed as the first parameter to
the specified callback function.
The object can be of any type except nil.

error out string
(optional)

If successful nil is returned, an error message otherwise.

Introduced in platform.apiLevel = '2.7'.

Callback Function

portFoundCallback ([object,] port)

The callback function provided in startScanning will be called for every ASI port found. The port parameter will be a port object
representing the port interface found. One call per port found. Ports maybe present at the moment of calling asi.startScanning
() or later added while scanning. Ports are reported only once between startScanning/stopScanning cycles.

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function startScanning, it will
be passed as the first parameter to this callback function.

Parameter Type Description
port in port

object
One port found during scanning.

Introduced in platform.apiLevel = '2.7'.

21.6 stopScanning
asi.stopScanning()

Stops scanning for ASI ports. Also resets the list of reported ports. Calling asi.startScanning() again will report all available
ports once more.

Introduced in platform.apiLevel = '2.7'.

21.7 Port Class
21.7.1 getName

name = port:getName()

Returns the name of the port as a string, as given by the platform. Typical examples are the following:

Platform Port name
TI-Nspire CX COM1

COM2

Windows COM1
COM9
COM12

MacOS usbmodem14121
usbmodem00001

Introduced in platform.apiLevel = '2.7'.

21.7.2 getIdentifier

identifier = port:getIdentifier()

Returns the identifier associated to the port as a string, as given by the platform. Typical examples are the following:

Platform Port name
TI-Nspire CX COM1

Windows COM1
COM9

Mac /dev/cu.usbmodem14121
/dev/cu.usbmodem00001

Introduced in platform.apiLevel = '2.7'.

21.7.3 getState

state = port:getState()

Returns the current state of the port as a constant from the asi table.

Chapter 21 Asynchronous Serial Interface 116

117 Chapter 21 Asynchronous Serial Interface

State Description
asi.DISCONNECTED Port is disconnected.

asi.CONNECTING Port is connecting.

asi.CONNECTED Port is connected.

asi.DISCONNECTING Port is disconnecting.

asi.INVALID Port is invalid or no longer present in the system.

Introduced in platform.apiLevel = '2.7'.

21.7.4 setBaudRate

self = port:setBaudRate(newBaudRate)

Sets the baud rate for the connection. By default connections are established at 115200 bauds. If a different value is desired,
the new baud rate must be set before establishing a connecting to the port. Returns self.

Parameter Type Description
port in port object The port to modify.

newBaudRate in number The new valid baud rate (please see table below).

self out port object The input port is returned as the output.

Baud Rate Constants

Valid baud rates can be set by using either the asi constant or their numeric value.

Constant Value#
asi.BAUD_RATE_9600 9600 bauds

asi.BAUD_RATE_115200 115200 bauds

asi.BAUD_RATE_DEFAULT 115200 bauds

21.7.5 connect

error = port:connect(connectionCallback[, object])

Sends an asynchronous request for connection to the port. When the request is processed, the result is reported to the
specified callback.

Parameter Type Description
port in port

object
The port to connect to.

connectionCallback in
function

Callback to receive connection events.

object in any
(optional)

If an object is provided, it will be passed as the first parameter to
the specified callback function. The object can be of any type
except nil.

error out string
(optional)

If successful nil is returned, an error message otherwise.

Introduced in platform.apiLevel = '2.7'.

Callback Function

connectionCallback ([object,] port, event[, error])

The callback function provided in connect will be called when the state of the connection to the port changes.

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function connect, it will
be passed as the first parameter to this callback function.

port in port
object

The port requesting to connect or disconnect.

event in asi
table
constant

The connection event (please see table below).

error in string
(optional)

If successfully connected or disconnected the parameter will be nil, an
error message otherwise.

Event Constants

Connection event Description
asi.CONNECTED The connection was successful and the port is ready for input/output operations.

asi.CONNECTING_FAILED The connection failed.
An error message is received.

asi.DISCONNECTED The port has been disconnected.
An error message is received if the port has been removed from the system.

Introduced in platform.apiLevel = '2.7'.

21.7.6 disconnect

port:disconnect()

Sends an asynchronous request for disconnection from the port. The result will be notified at the callback provided at
port:connect().

Introduced in platform.apiLevel = '2.7'.

21.7.7 setWriteListener

self = port:setWriteListener(writeCallback[, object])

Registers a callback for write-complete notifications. The callback is called after a write request. Returns self.

Parameter Type Description
port in port

object
The port to modify.

writeCallback in
function

Callback to receive write-complete notifications.

object in any
(optional)

If an object is provided, it will be passed as the first parameter to the
specified callback function. The object can be of any type except nil.

self out port
object

The input port is returned as the output.

Introduced in platform.apiLevel = '2.7'.

Callback Function

writeCallback([object ,]port[, error])

This callback is called when a write request has been completed. A string is passed in case an error occurred while processing
the write request.

Chapter 21 Asynchronous Serial Interface 118

119 Chapter 21 Asynchronous Serial Interface

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function setWriteListener,
it will be passed as the first parameter to this callback function.

port in port
object

The port where the data was sent to be written.

error in string
(optional)

An error message if an error occurred while processing the write request;
nil otherwise.

21.7.8 write

error = port:write(writeData)

Sends an asynchronous request for a write operation. When the request is serviced, the writeCallback is called to confirm
completion, if previously specified with setWriteListener. Returns error if an error occurred.

Parameter Type Description
port in port object The port to write to.

writeData in string Data to be written. Data with zero length is not supported.

error out string
(optional)

If the request is successfully queued up, nil is returned; an error
message otherwise.

Introduced in platform.apiLevel = '2.7'.

21.7.9 setReadListener

self = port:setReadListener(readCallback[, object])

Registers a callback for read notifications. The callback is called after a read request. Returns self.

Parameter Type Description
port in port

object
The port to modify.

readCallback in
function

Callback to receive read notifications. The actual value read can be
retrieved with port:getValue().

object in any
(optional)

If an object is provided, it will be passed as the first parameter to the
specified callback function. The object can be of any type except nil.

self out port
object

The input port is returned as the output.

Introduced in platform.apiLevel = '2.7'.

Callback Function

readCallback([object ,]port[, error])

This callback is called when a read request has been completed. A string is passed in case an error occurred while processing
the read request. The actual value read can be retrieved with port:getValue().

Parameter Type Description
object in any

(optional)
If an object was provided as a parameter to the function setReadListener, it
will be passed as the first parameter to this callback function.

port in port
object

The port from where the data was requested to be read.

error in string
(optional)

An error message if an error occurred while processing the read request;
nil otherwise.

Introduced in platform.apiLevel = '2.7'.

21.7.10 setReadTimeout

self = port:setReadTimeout(newTimeout)

Sets the maximum amount of time that the platform should wait for the first byte. This affects the behavior of read(). By
default the timeout is 1000 milliseconds (1 second). Returns self.

Parameter Type Description
port in port

object
The port to modify.

newTimeout in
number

The read timeout in milliseconds. Must be in the interval [30..3000], either
as a numeric value or as a constant (please see table below).

self out
port
object

The input port is returned as the output.

Timeout Constant

Constant Value#
asi.READ_TIMEOUT_DEFAULT 1000

21.7.11 read

error = port:read([bytesToRead])

Sends an asynchronous request for a read operation. When the request is serviced, the readCallback is called to confirm
completion, if previously specified with setReadListener. Returns error if an error occurred.

Parameter Type Description
port in port

object
The port to read from.

bytesToRead in number Amount of bytes to read. Must be in the interval [1..1024]. By default
1024 is used if no amount is specified.

error out string
(optional)

If request is successfully queued up, nil is returned; an error message
otherwise.

Introduced in platform.apiLevel = '2.7'.

21.7.12 getValue

value = port:getValue()

Retrieves the last data read, as string.

Introduced in platform.apiLevel = '2.7'.

Chapter 21 Asynchronous Serial Interface 120

Appendix A

Script Compatibility

This Appendix summarizes aspects about different types of compatibility issues and concepts for Lua scripts inside the TI-
Nspire™ platform. It supports authoring documents for a mixed environment of TI-Nspire™ software releases and different
platforms. Authoring scripts for a higher API level than supported inside a current script development environment is detailed
in section A.2 .

A.1 Backward and Forward Compatibility
There are two compatibility concepts implemented in the TI-Nspire™ platform. The following sections describe these concepts
and their interaction. Understanding both is essential to author documents able to run in environments with mixed TI-Nspire™
software releases. If this is not desired, you can skip section A.1 and continue reading section A.2 .

A.1.1 Document Compatibility
This is an old concept of the TI-Nspire™ platform. For every document there are two different TI-Nspire™ release values — the
release where the document was “last saved” and a “minimum requested” release. Any TI-Nspire™ release with a lower
release number than the “minimum requested” release, blocks opening the document. If the TI-Nspire™ release is at least the
“last saved” release level, the document will open without warning.

This concept has been recently enhanced. The “minimum requested” release is now determined dynamically based on the
content. This allows a lower minimum release; however, changing the document content may raise the “minimum requested”
release dynamically.

Script authors interested in backwards compatibility of scripts need to understand that changing non-scripting content inside
the same document as the script might modify the “minimum release.” Currently, there is no better support for the script
writer to understand what the “minimum requested” releases is other than opening the document manually with multiple
releases of the TI-Nspire™ software.

If the document contains only scripts, the rule is simple. Documents will open, but scripts may fail if the used API level is not
supported. The earliest software able to open documents containing scripts is TI-Nspire™ software version 3.1. As an
exception, the 3.1 software release only opens documents if all contained scripts are of platform.apiLevel = '1.0'

A.1.2 Scripting Compatibility
Scripts written for the TI-Nspire™ platform are by default forward compatible on the particular platforms the script was
designed and tested for (platform compatibility will be discussed in section A.3). The key component to ensure forward
compatibility is the API level concept. The API level specifies the scripting interface of a particular TI-Nspire™ software release.
The mapping between the software release and its highest supported API level is shown in Table A.1 . The highest supported,
or current API level of a software release used to create a script, is the default API level for scripts when initially authored. The
API level can be changed manually by the author at any time.

Backwards compatibility of scripts can be reached by requesting the API level of the oldest
TI-Nspire™ software release that is targeted to run the script. To support software release 3.1, the script would request
platform.apiLevel = '1.0'.

The requested API level of the script is not guaranteed, as an older TI-Nspire™ software version running the script may not
support this API level. In addition, requesting an API level that does not exist or is not supported in the used TI-Nspire™
software version will result to the highest supported API level, but not higher than the requested API level. If the script requires
a minimum API level to run successful, it might be the simplest solution to prevent the script from executing. This can be
archived via the File Menu in the Script Editor.

As an exception to the outlined API level behavior, requesting an API level below 1.0 will result in the current API level of the
software release. Please see Table A.1 for more details. Please see section A.2 for a useful example of requesting an API level
that is not supported.

Appendix A Script Compatibility 121

122 Appendix A Script Compatibility

A.2 Creating Scripts for a Future Software Release
There might be times when a new version of TI-Nspire™ software with a higher API Level is released, but it does not contain a
development environment. In this case, the new functions of the higher API level must be used conditionally at run time. In
addition, the authoring process might become a two-step approach. After first authoring the script and saving the document on
the authoring platform, it might be that TI-Nspire™ software marks the document dirty when opened first on the target API
level platform. When this happens please save the script on the target platform. Saving the document in such a case will be
the second step of the authoring process. Once this second step is completed for a specific document it will be usually not be
requested again.

An example of how this can be accomplished for the touch library when developing with OS version 3.2 is shown in Listing A.1
. This Lua snippet should be the first section in the script. The touch library is not defined in platform.apiLevel = '2.0' but in all
future releases.

Table A.1: Mapping between API level and TI-Nspire™ software version
API
Level

Software
Version

Comment

'1.0'. 3.1 Initial release supporting Lua scripting.
'2.0'. 3.2 Major update containing physics and many other new binding.
'2.2'. 3.4 Introduction of low-level support for touch platforms.
'2.3'. 3.6 Image resources.
'2.4'. 3.7 Support for background color and painted rectangle.
'2.5'. 3.11 Bluetooth LE.
'2.6'. 4.1 Bluetooth LE added APIs - Advertisement data, RSSI, timeout for connect

procedure.
'2.7'. 4.2 Asynchronous Serial Interface.

Listing A.1: Authoring for a Future Software Release for the Example of Touch

platform.apiLevel = '2.2'
iftouch then
 if not touch.enabled then

functiontouch.enabled() return true end
functiontouch.isKeyboardAvailable() return true end

end
else
 touch = {}

functiontouch.enable() returnfalseend
end

A.3 Platform Compatibility
A script author usually prefers to write scripts that are platform independent. Unfortunately this is not true for every feature
supported by all platforms. Table A.2 shows the major differences. It is the script authors choice to avoid them, use them on
selected platforms only, or try to achieve a seamless user experience across all platforms. In the latter case, authors should
test scripts on all platforms.

Table A.2: Overview about platform incompatibilities
Feature Desktop Handheld Touch Platform
on.grabDown
on.grabUp

Supported, (x, y) == (0, 0) Supported, same as Desktop if no mouse visible Not supported

on.returnKey() Not supported Supported Supported
Context Menu on.contextMenu()

on.rightMouseDown()
on.rightMouseUp()

on.contextMenu() Not supported

Appendix B

Deprecated API Functions and API Behavior

B.1 Image Library
Before platform.apiLevel = '2.3', images were encoded as strings within the script itself. Only the TI-Nspire™ Script Editor of
the software version 3.2 supports authoring images encoded as strings inside the script itself.

The following provides details about the encoding.

The header consists of 20 bytes of data arranged as presented in the following table. All elds are little endian integers.

Offset Width (bytes) Contents
0 4 Pixel width of image

4 4 Pixel height of image

8 1 Image alignment (0)

9 1 Flags (0)

10 2 Pad (0)

12 4 The number of bytes between successive raster lines

16 2 The number of bits per pixel (16)

18 2 Planes per bit (1)

The image pixel data immediately follows the header. Pixels are arranged in rows. Each pixel is a little endian 16-bit integer
with ve bits for each color red, green, and blue. The top bit determines if the pixel is drawn. If it is zero (0), the pixel is not
drawn. If it is one (1), the pixel is drawn in the RGB color of the remaining 15 bits.

0x8000 is black, 0x801F is blue, 0x83E0 is green, 0xFC00 is red, and 0xFFFF is white.

B.2 Platform Library
B.2.1 gc

platform.gc()

This function has been replaced by platform.withGC(), but if you want to author or modify scripts with platform.apiLevel = '1.0'
you still need this function.

This graphics context should not be used for drawing purposes because it is not guaranteed to be associated with a window.

Listing B.1 shows an example of using the static graphics context to get the string width and height.

Listing B.1: Use of the static GC in platform.apiLevel = '1.0'

local gc = platform.gc()
gc:setFont('serif', 'r', 10)
local width = gc:getStringWidth(a_string)
local height = gc:getStringHeight(a_string)

Introduced in platform.apiLevel = '1.0'

Removed in platform.apiLevel = '2.0'

Appendix B Deprecated API Functions and API Behavior 123

124 Appendix B Deprecated API Functions and API Behavior

B.3 Platform Library
B.3.1 drawString Vertical Alignment

gc:drawString("text", x, y [, vertalignment])

Prior to platform.apiLevel = '2.3', “none” was used to specify unspecified vertical alignment. The vertical alignment “none” has
been deprecated. Specifying no alignment defaults to “top” and so does “none”.

Introduced in platform.apiLevel = '1.0'

Extended in platform.apiLevel = ‘2.3’

B.4 Requested API Level
Prior to TI-Nspire™ software version 3.6 (platform.apiLevel = '2.3'), requesting a
non-supported API level resulted in the highest API level supported by the TI-Nspire™ software version used to run the script.
This behavior has been revised. See section 14.1 for details about the new revised behavior.

Introduced in platform.apiLevel = '2.0'

Extended in platform.apiLevel = ‘2.3’

Index

2

2D Editor Library 6
createChemBox 6
createMathBox 7
getExpressions 7
getExpressionsSelection 7
getText 7
hasFocus 8
isVisible 8
move 8
newRichText 6
registerFilter 8
rezize 9
setBorder 9
setBorderColor 9
setColorable 9
setDisable2DinRT 9
setExpression 9
setFocus 10
setFontSize 10
setMainFont 10
setReadOnly 11
setSelectable 11
setSizeChangeListener 11
setText 11
setTextChangeListener 12
setTextColor 12
setVisible 12
setWordWrapWidth 12

A

Appendix A
Backward and Forward Compatibility 121
Creating Scripts for a Future Software Release 122
Document Compatibility 121
Platform Compatibility 122
Script Compatibility 121
Scripting Compatibility 121

Appendix B
Deprecated API Functions and API Behavior 123

Image Library 123
Platform Library 123-124

drawStringVerticleAlignment 124

gc 123

Requested API Level 124
ASI Library

addStateListener 114-115
Asynchronous Serial Interface 114
isScanning 115

Port Class 116
connect 117
disconnect 118
getIdentifier 116
getName 116
getState 116
getValue 120
read 120
setBaudRate 117
setReadListener 119
setReadTimeout 120
setWriteListener 118
write 119

require 'asi' 114
startScanning 115
stopScanning 116

B

Bluetooth® Smart Library 103
Bluetooth® LE 103

addStateListener 103
Format Specifier for pack and unpack 104
pack 104
removeStateListener 104
startScanning 105
unpack 104

Bluetooth® LE Central 105
isScanning 107
stopScanning 106

Characteristic Class 111
getUUID 111
getValue 113
read 112
setNotify 113
setValueUpdatedListener 111
setWriteCompleteListener 112
write 113

Peripheral Class 107
connect 108
disconnect 109
discoverServices 109
getName 107
getServices 110
getState 107

Service Class 110
discoverCharacteristics 110
getCharacteristics 111
getUUID 110

C

Class Library 13
class 13

Clipboard Library 14
addText 14
getText 14

125 Index

Cursor Library 15
hide 17
set 15
show 17

D

Document Library 18
markChanged 18

E

Event Handling 19
activate 20
arrowDown 20
arrowKey 20
arrowLeft 21
arrowRight 21
arrowUp 21
backspaceKey 21
backTabKey 21
charIn 21
clearKey 22
construction 22
contextMenu 22
copy 22
create 22
createMathBox 22
cut 23
deactivate 23
deleteKey 23
destroy 23
enterKey 23
escapeKey 23
getFocus 23
getSymbolList 24
grabDown 24
grabUp 24
help 24
keyboardDown 25
keyboardUp 25
loseFocus 25
mouseDown 25
mouseMove 25
mouseUp 25
paint 26
paste 26
propertiesChanged 26
resize 26
restore 26
returnKey 27
rightMouseDown 27
rightMouseUp 27
save 27
tabKey 28
timer 28
varChange 28

G

Graphics Library 29
clipRect 29
drawArc 29
drawImage 29
drawLine 30
drawPolyLine 30
drawRect 30
drawString 30
fillArc 30
fillPolygon 30
fillRect 31
getStringHeight 31
getStringWidth 31
setColorRGB 31
setFont 31
setPen 31

I

Image Library 32
copy 32
height 32
new 32
rotate 32
width 33

L

List of Figures iv
List of Tables i
Listings List ii
Locale Library 34

name 34

M

Math Library Extension 35
eval 35
evalStr 36
getEvalSettings 36
setEvalSettings 37

Module Library 39

P

Physics Library 51
Arbiters and Collision Pairs 95

96
a 96
b 96
bodies 96
depth 96
elasticity 97
friction 97
impulse 97
isFirstContact 97
normal 98

126 Index

point 98
setElasticity 98
setFriction 98
shapes 99
totalImpulse 99
totalImpulseWithFriction 99

Bodies 64
activate 64
angle 65
angVel 65
applyForce 65
applyImpulse 65
Body 64
data 66
force 66
isRogue 66
isSleeping 66
kineticEnergy 67
local2World 67
mass 67
moment 67
pos 68
resetForces 68
rot 68
setAngle 68
setAngVel 69
setData 69
setForce 69
setMass 69
setMoment 70
setPos 70
setPositionFunc 70
setTorque 71
setVel 71
setVelocityFunc 71
setVLimit 72
setWLimit 72
sleep 72
sleepWithGroup 73
torque 73
updatePosition 73
updateVelocity 73
vel 74
vLimit 74
wLimit 74
world2Local 74

Bounding Boxes 60
b 61
BB 60
clampVect 61
containsBB 61
containsVect 61
expand 62
intersects 62
l 62
merge 62

r 63
setb 62
setl 63
setr 63
sett 63
t 64
wrapVect 64

Circle Shapes 79
CircleShape 80
offset 80
radius 80

Constraints 91
Damped Rotary Spring 91
Damped Spring 92
Gear Joint 92
Groove Joint 93
Pin Joint 93
Pivot Joint 93
Ratchet Joint 94
Rotary Limit Joint 94
SimpleMotor 95
Slide Joints 95

Miscellaneous routines 51
INFINITY 51
momentForBox 51
momentForCircle 51
momentForPoly 52
momentForSegment 52

Polygon Shapes 80
numVerts 81
points 81
PolyShape 80
vert 81

Segment Shapes 81
a 82
b 82
normal 82
radius 83
SegmentShape 82

SegmentQueryInfo 101
hitDist 102
hitPoint 102

ShapeQueries 99
pointQuery 99
segmentQuery 100

Shapes 75
BB 75
Bdata 75
body 75
collisionType 75
friction 76
group 76
layers 76
rawBB 76
restitution 77
sensor 77

Index 127

setCollisionType 77
setData 77
setFriction 78
setGroup 78
setLayers 78
setRestitution 78
setSensor 79
setSurfaceV 79
surfaceV 79

SpaceQueries 100
pointQuery 100
pointQueryFirst 100
segmentQuery 101
segmentQueryFirst 101

Spaces 83
addBody 83
addCollisionHandler 84
addConstraint 83
addPostStepCallback 84
addShape 85
addStaticShape 85
damping 85
data 85
elasticIterations 85
gravity 86
idleSpeedThreshold 86
iterations 86
rehashShape 86
rehashStatic 87
removeBody 87
removeConstraint 87
removeShape 87
removeStaticShape 88
resizeActiveHash 88
resizeStaticHash 88
setDamping 88
setData 89
setElasticIterations 89
setGravity 89
setIdleSpeedThreshold 89
setIterations 90
setSleepTimeThreshold 90
sleepTimeThreshold 90
Space 83
step 91

Vectors 52
add 53
clamp 53
cross 53
dist 54
distq 54
dot 54
eql 54
length 55
lengthsq 55
lerp 55

lerpconst 55
mult 56
near 56
neg 56
normalize 56
normalizeSafe 57
perp 57
project 57
rotate 57
rperp 58
setx 58
sety 58
slerp 58
slerpconst 59
sub 59
toangle 59
unrotate 60
Vect 52
x 60
y 60

Platform Library 40
apiLevel 40
getDeviceID 43
hw 40
isColorDisplay 40
isDeviceModeRendering 41
isTableModeRendering 41
registerErrorHandling 41
window 41

displayInvalidatedRectangles 42
getScrollHeight 42
height and width 41
invalidate 41
setBackgroundColor 42
setFocus 42
setScrollHeight 42

withGC 43

S

Standard Libraries 1
Basic Library Functions 1

Coroutine Sub-Library 1
Math Library 2
Module Library 1
String Library 1
Table Library 2
Unimplemented Libraries and Functions 2

String Library Extension 44
pack 44
split 44
uchar 44
unpack 45
usub 44

128 Index

T

Timer Library 46
getMilliSecCounter 46
start 46
stop 46

Tool Palette Library 47
enable 47
enableCopy 48
enableCut 48
enablePaste 48
register 47

Touch Library 3
Library Functions 4

enabled 4
isKeyboardAvaliable 5
isKeyboardVisible 5
ppi 4
showKeyboard 5
xppi 4
yppi 4

Overview 3
Event Handling 3
On-Screen Keyboard and Screen Resize Behavior 3

V

Variable Library 49
list 49
makeNumericList 49
monitor 49
recall 49
recallAt 50
recallStr 50
store 50
storeAt 50
unmonitor 50

Index 129

	Chapter 1 Standard Libraries
	1.1 Basic Library Functions
	Coroutine Sub-Library

	1.2 Module Library
	1.3 String Library
	1.4 Table Library
	1.5 Math Library
	1.6 Unimplemented Libraries and Functions

	Chapter 2 Touch Library
	2.1 Overview
	2.1.1 On-Screen Keyboard and Screen Resize Behavior
	2.1.2 Event Handling

	2.2 Library Functions
	2.2.1 ppi
	2.2.2 xppi
	2.2.3 yppi
	2.2.4 enabled
	2.2.5 isKeyboardAvailable
	2.2.6 isKeyboardVisible
	2.2.7 showKeyboard

	Chapter 3 2D Editor Library
	3.1 newRichText
	3.2 createChemBox
	3.3 createMathBox
	3.4 getExpression
	3.5 getExpressionSelection
	3.6 getText
	3.7 hasFocus
	3.8 isVisible
	3.9 move
	3.10 registerFilter
	3.11 resize
	3.12 setBorder
	3.13 setBorderColor
	3.14 setColorable
	3.15 setDisable2DinRT
	3.16 setExpression
	3.17 setFocus
	3.18 setFontSize
	3.19 setMainFont
	3.20 setReadOnly
	3.21 setSelectable
	3.22 setSizeChangeListener
	3.23 setText
	3.24 setTextChangeListener
	3.25 setTextColor
	3.26 setVisible
	3.27 setWordWrapWidth

	Chapter 4 Class Library
	4.1 class

	Chapter 5 Clipboard Library
	5.1 addText
	5.2 getText

	Chapter 6 Cursor Library
	6.1 set
	6.2 hide
	6.3 show

	Chapter 7 Document Library
	7.1 markChanged

	Chapter 8 Event Handling
	8.1 activate
	8.2 arrowDown
	8.3 arrowKey
	8.4 arrowLeft
	8.5 arrowRight
	8.6 arrowUp
	8.7 charIn
	8.8 backspaceKey
	8.9 backTabKey
	8.10 clearKey
	8.11 construction
	8.12 contextMenu
	8.13 copy
	8.14 create
	8.15 createMathBox
	8.16 cut
	8.17 deactivate
	8.18 deleteKey
	8.19 destroy
	8.20 enterKey
	8.21 escapeKey
	8.22 getFocus
	8.23 getSymbolList
	8.24 grabDown
	8.25 grabUp
	8.26 help
	8.27 keyboardDown
	8.28 keyboardUp
	8.29 loseFocus
	8.30 mouseDown
	8.31 mouseMove
	8.32 mouseUp
	8.33 paint
	8.34 paste
	8.35 propertiesChanged
	8.36 resize
	8.37 restore
	8.38 returnKey
	8.39 rightMouseDown
	8.40 rightMouseUp
	8.41 save
	8.42 tabKey
	8.43 timer
	8.44 varChange

	Chapter 9 Graphics Library
	9.1 clipRect
	9.2 drawArc
	9.3 drawImage
	9.4 drawLine
	9.5 drawPolyLine
	9.6 drawRect
	9.7 drawString
	9.8 fillArc
	9.9 fillPolygon
	9.10 fillRect
	9.11 getStringHeight
	9.12 getStringWidth
	9.13 setColorRGB
	9.14 setFont
	9.15 setPen

	Chapter 10 Image Library
	10.1 new
	10.2 copy
	10.3 height
	10.4 rotate
	10.5 width

	Chapter 11 Locale Library
	11.1 name

	Chapter 12 Math Library Extension
	12.1 eval
	12.2 evalStr
	12.3 getEvalSettings
	12.4 setEvalSettings

	Chapter 13 Module Library
	Chapter 14 Platform Library
	14.1 apiLevel
	14.2 hw
	14.3 isColorDisplay
	14.4 isDeviceModeRendering
	14.5 isTabletModeRendering
	14.6 registerErrorHandler
	14.7 window
	14.7.1 height and width
	14.7.2 invalidate
	14.7.3 setBackgroundColor
	14.7.4 setFocus
	14.7.5 getScrollHeight
	14.7.6 setScrollHeight
	14.7.7 displayInvalidatedRectangles

	14.8 withGC
	14.9 getDeviceID

	Chapter 15 String Library Extension
	15.1 split
	15.2 uchar
	15.3 usub
	15.4 pack
	15.5 unpack

	Chapter 16 Timer Library
	16.1 getMilliSecCounter
	16.2 start
	16.3 stop

	Chapter 17 Tool Palette Library
	17.1 register
	17.2 enable
	17.3 enableCut
	17.4 enableCopy
	17.5 enablePaste

	Chapter 18 Variable Library
	18.1 list
	18.2 makeNumericList
	18.3 monitor
	18.4 recall
	18.5 recallAt
	18.6 recallStr
	18.7 store
	18.8 storeAt
	18.9 unmonitor

	Chapter 19 Physics Library
	19.1 Miscellaneous routines
	19.1.1 INFINITY
	19.1.2 momentForBox
	19.1.3 momentForCircle
	19.1.4 momentForPoly
	19.1.5 momentForSegment

	19.2 Vectors
	19.2.1 Vect
	19.2.2 add
	19.2.3 clamp
	19.2.4 cross
	19.2.5 dist
	19.2.6 distsq
	19.2.7 dot
	19.2.8 eql
	19.2.9 length
	19.2.10 lengthsq
	19.2.11 lerp
	19.2.12 lerpconst
	19.2.13 mult
	19.2.14 near
	19.2.15 neg
	19.2.16 normalize
	19.2.17 normalizeSafe
	19.2.18 perp
	19.2.19 project
	19.2.20 rotate
	19.2.21 rperp
	19.2.22 setx
	19.2.23 sety
	19.2.24 slerp
	19.2.25 slerpconst
	19.2.26 sub
	19.2.27 toangle
	19.2.28 unrotate
	19.2.29 x
	19.2.30 y

	19.3 Bounding Boxes
	19.3.1 BB
	19.3.2 b
	19.3.3 clampVect
	19.3.4 containsBB
	19.3.5 containsVect
	19.3.6 expand
	19.3.7 intersects
	19.3.8 l
	19.3.9 merge
	19.3.10 setb
	19.3.11 r
	19.3.12 setl
	19.3.13 setr
	19.3.14 sett
	19.3.15 t
	19.3.16 wrapVect

	19.4 Bodies
	19.4.1 Body
	19.4.2 activate
	19.4.3 angle
	19.4.4 angVel
	19.4.5 applyForce
	19.4.6 applyImpulse
	19.4.7 data
	19.4.8 force
	19.4.9 isRogue
	19.4.10 isSleeping
	19.4.11 local2World
	19.4.12 kineticEnergy
	19.4.13 mass
	19.4.14 moment
	19.4.15 pos
	19.4.16 resetForces
	19.4.17 rot
	19.4.18 setAngle
	19.4.19 setAngVel
	19.4.20 setData
	19.4.21 setForce
	19.4.22 setMass
	19.4.23 setMoment
	19.4.24 setPos
	19.4.25 setPositionFunc
	19.4.26 setTorque
	19.4.27 setVel
	19.4.28 setVelocityFunc
	19.4.29 setVLimit
	19.4.30 setWLimit
	19.4.31 sleep
	19.4.32 sleepWithGroup
	19.4.33 torque
	19.4.34 updatePosition
	19.4.35 updateVelocity
	19.4.36 vel
	19.4.37 vLimit
	19.4.38 wLimit
	19.4.39 world2Local

	19.5 Shapes
	19.5.1 BB
	19.5.2 body
	19.5.3 collisionType
	19.5.4 data
	19.5.5 friction
	19.5.6 group
	19.5.7 layers
	19.5.8 rawBB
	19.5.9 restitution
	19.5.10 sensor
	19.5.11 setCollisionType
	19.5.12 setData
	19.5.13 setFriction
	19.5.14 setGroup
	19.5.15 setLayers
	19.5.16 setRestitution
	19.5.17 setSensor
	19.5.18 setSurfaceV
	19.5.19 surfaceV

	19.6 Circle Shapes
	19.6.1 CircleShape
	19.6.2 offset
	19.6.3 radius

	19.7 Polygon Shapes
	19.7.1 PolyShape
	19.7.2 numVerts
	19.7.3 points
	19.7.4 vert

	19.8 Segment Shapes
	19.8.1 SegmentShape
	19.8.2 a
	19.8.3 b
	19.8.4 normal
	19.8.5 radius

	19.9 Spaces
	19.9.1 Space
	19.9.2 addBody
	19.9.3 addConstraint
	19.9.4 addCollisionHandler
	19.9.5 addPostStepCallback
	19.9.6 addShape
	19.9.7 addStaticShape
	19.9.8 damping
	19.9.9 data
	19.9.10 elasticIterations
	19.9.11 gravity
	19.9.12 idleSpeedThreshold
	19.9.13 iterations
	19.9.14 rehashShape
	19.9.15 rehashStatic
	19.9.16 removeBody
	19.9.17 removeConstraint
	19.9.18 removeShape
	19.9.19 removeStaticShape
	19.9.20 resizeActiveHash
	19.9.21 resizeStaticHash
	19.9.22 setDamping
	19.9.23 setData
	19.9.24 setElasticIterations
	19.9.25 setGravity
	19.9.26 setIdleSpeedThreshold
	19.9.27 setIterations
	19.9.28 setSleepTimeThreshold
	19.9.29 sleepTimeThreshold
	19.9.30 step

	19.10 Constraints
	19.10.1 Damped Rotary Spring
	19.10.2 Damped Spring
	19.10.3 Gear Joint
	19.10.4 Groove Joint
	19.10.5 Pin Joint
	19.10.6 Pivot Joint
	19.10.7 Ratchet Joint
	19.10.8 Rotary Limit Joint
	19.10.9 Simple Motor
	19.10.10 Slide Joints

	19.11 Arbiters and Collision Pairs
	19.11.1 #
	19.11.2 a
	19.11.3 b
	19.11.4 bodies
	19.11.5 depth
	19.11.6 elasticity
	19.11.7 friction
	19.11.8 impulse
	19.11.9 isFirstContact
	19.11.10 normal
	19.11.11 point
	19.11.12 setElasticity
	19.11.13 setFriction
	19.11.14 shapes
	19.11.15 totalImpulse
	19.11.16 totalImpulseWithFriction

	19.12 Shape Queries
	19.12.1 pointQuery
	19.12.2 segmentQuery

	19.13 Space Queries
	19.13.1 pointQuery
	19.13.2 pointQueryFirst
	19.13.3 segmentQuery
	19.13.4 segmentQueryFirst

	19.14 SegmentQueryInfo
	19.14.1 hitDist
	19.14.2 hitPoint

	Chapter 20 Bluetooth® Smart Library
	20.1 Bluetooth® LE
	20.1.1 addStateListener
	20.1.2 removeStateListener
	20.1.3 pack
	20.1.4 unpack
	20.1.5 Format Specifier for pack and unpack

	20.2 Bluetooth® LE Central
	20.2.1 startScanning
	20.2.2 stopScanning
	20.2.3 isScanning

	20.3 Peripheral Class
	20.3.1 getName
	20.3.2 getState
	20.3.3 connect
	20.3.4 disconnect
	20.3.5 discoverServices
	20.3.6 getServices

	20.4 Service Class
	20.4.1 getUUID
	20.4.2 discoverCharacteristics
	20.4.3 getCharacteristics

	20.5 Characteristic Class
	20.5.1 getUUID
	20.5.2 setValueUpdateListener
	20.5.3 setWriteCompleteListener
	20.5.4 read
	20.5.5 setNotify
	20.5.6 getValue
	20.5.7 write

	Chapter 21 Asynchronous Serial Interface
	21.1 require 'asi'
	21.2 addStateListener
	21.3 removeStateListener
	21.4 isScanning
	21.5 startScanning
	21.6 stopScanning
	21.7 Port Class
	21.7.1 getName
	21.7.2 getIdentifier
	21.7.3 getState
	21.7.4 setBaudRate
	21.7.5 connect
	21.7.6 disconnect
	21.7.7 setWriteListener
	21.7.8 write
	21.7.9 setReadListener
	21.7.10 setReadTimeout
	21.7.11 read
	21.7.12 getValue

	Appendix A Script Compatibility
	A.1 Backward and Forward Compatibility
	A.1.1 Document Compatibility
	A.1.2 Scripting Compatibility

	A.2 Creating Scripts for a Future Software Release
	A.3 Platform Compatibility

	Appendix B Deprecated API Functions and API Behavior
	B.1 Image Library
	B.2 Platform Library
	B.2.1 gc

	B.3 Platform Library
	B.3.1 drawString Vertical Alignment

	B.4 Requested API Level

	Index

