Activity Overview: Students will be given piecewise functions and asked to evaluate both the left-hand limit and the right-hand limit of the function as x approaches a given number, c. Using sliders, students will estimate the value of the missing variable that makes the left-hand limit and the right-hand limit equal.

Topic: Limits

• One Sided Limits

Teacher Preparation and Notes

- Students should already have been introduced to one-sided limits. They should also know how to evaluate a one-sided limit graphically.
- Students should know that a limit exists if and only if the left-hand limit and the right-hand limit are equal.
- Estimated time = 20 minutes

Associated Materials

- OneSidedLimits Student.doc
- OneSidedLimits.tns

Students will read and follow the directions on page 1.2. For Problems 2 and 3, students are asked whether the function table of values is consistent or inconsistent with the value of a that ensures that the limit exits, and to find the value of a algebraically.

Problem 1

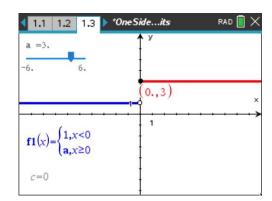
On page 1.3, before moving the slider, students will graphically estimate the limit of $\mathbf{f1}(x)$ as x approaches 0 from the left and the right. Students will then use the slider to graphically estimate the value of a that will ensure that the limit of $\mathbf{f1}(x)$ as x approaches zero exists.

Student Worksheet solutions

1.
$$\lim_{x\to 0^-}$$
 f1(x) \approx 1

2.
$$\lim_{x\to 0^+} \mathbf{f1}(x) \approx 5$$

3.
$$a \approx 1$$



Problem 2

On page 2.1, before moving the slider, students will graphically estimate the limit of $\mathbf{f1}(x)$ as x approaches 1 from the left and the right. Students will then use the slider to graphically estimate the value of a that will ensure that the limit of $\mathbf{f1}(x)$ as x approaches one exists.

Student Worksheet solutions

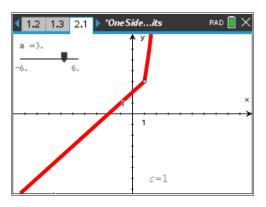
1.
$$\lim_{x\to 1^-} \mathbf{f1}(x) \approx 3$$

2.
$$\lim_{x \to 1^+} \mathbf{f1}(x) \approx 5$$

3.
$$a \approx 3$$

4. Consistent

5.
$$1 + 2 = a \cdot 1^2$$
; $a = 3$



Problem 3

On page 3.1, before moving the slider, students will graphically estimate the limit of $\mathbf{f1}(x)$ as x approaches 2 from the left and the right. Students will then use the slider to graphically estimate the value of a that will ensure that the limit of $\mathbf{f1}(x)$ as x approaches two exists.

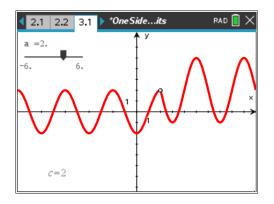
Student Worksheet Solutions

1.
$$\lim_{x\to 2^-}$$
 f1(x) \approx 2

2.
$$\lim_{x\to 2^+} \mathbf{f1}(x) \approx 5$$

3.
$$a \approx 2$$

5.
$$2\sin\left(\frac{\pi}{2}(2-1)\right) = 3\sin\left(\frac{\pi}{2}(2-4)\right) + a$$
$$2\sin\left(\frac{\pi}{2}\right) = 3\sin(-\pi) + a$$
$$2 \cdot 1 = 3 \cdot 0 + a$$
$$2 = a$$



Extension – Continuity

Students are introduced to the concept of continuity and are asked if each of the functions in Problems 1–3 is continuous at c given the value of **a** found earlier. For the functions that are not continuous, they are asked how the function can be modified to make it continuous.

Student Worksheet Solutions

- **1.** Continuous because all of the x-values in the neighborhood of x = 0 are included in the domain of the function.
- 2. Not continuous because x = 1 is not included in the domain of the function. To make the function continuous at x = 1, either change the interval in the first branch to $x \le 1$ or change the interval in the second branch to $x \ge 1$.
- **3.** Not continuous because x = 2 is not included in the domain of the function. To make the function continuous at x = 2, either change the interval in the first branch to $x \le 2$ or change the interval in the second branch to $x \ge 2$.