\qquad
\qquad

Problem 1 - Graphing $y=\frac{1}{x-a}$ for various values of a
On page 1.4, Grab point a and drag it left and right. Notice that as the value of a changes, the equation and graph are updated.

1. a. For what value of x is $y=\frac{1}{x-2}$ undefined?
b. For what value of x is $y=\frac{1}{x+1}$ undefined?
c. For what value of x is $y=\frac{1}{x-a}$ undefined?
2. As you move point a along the x-axis, the place where the graph of $y=\frac{1}{x-a}$ has a "break" follows along. Explain why this happens.
3. At what value of x does the graph of $y=\frac{1}{x-a}$ have a vertical asymptote?

Problem 2 - Exploring Another Triangle

4. For each value of x below, what is the y-coordinate of point P for the graph on page 2.2.

$$
(5, \quad)(4, \quad)(3.5, \quad)(3.2, \quad)(1, \quad)
$$

5. Enter 3.01 for the x-coordinate. Where did the point go? Click and grab the coordinate plane. Pull down on the plane repeatedly until you bring point P into view. Be persistent, point P is way up there!
6. Now enter 2.99 for the x-coordinate of P. What is the value of y ? Pull the plane up until you can see point P.
7. a. Could you make the y-coordinate of point P be equal to 1,000 ?

If so, what is the value of x ?
b. Could you make the y-coordinate of point P be equal to $-1,000$?

If so, what is the value of x ?
8. Could you make the y-coordinate of point P as big as anyone asked? How?

Problem 3 - Horizontal Asymptote

9. For each value of x below, what is the y-coordinate of point P for the graph on page 3.2.

$$
(5, \quad)(13, \quad)(23, \quad)(103, \quad)(1, \quad)
$$

10. Enter 503 for x. Where did the point go? Click and grab the coordinate plane. Pull the plane to the left repeatedly until you bring point P into view.
11. Enter -497 for the x-coordinate of point P. What is the value of y ? Pull the plane to the right until you can see P.
