

This activity uses the reduced row-echelon form of a matrix to solve systems of three equations with three unknowns. To follow a step-by-step process for row reduction, see the activity: Solving Systems Using Row Operations 1.

- Add Calculator.
- 2. Press Menu > Matrix & Vector > Reduced Row-Echelon Form.

- 3. Press the key and choose the 3 X 3 matrix template.
- 4. Make sure the number of rows is 3. Tab to the number of columns and change it to 4, tab to OK, and press [enter].
- 5. Enter the coefficients into the matrix, using the tab key to move from element to element. The matrix shown is for the system of equations: x + 2y + 2z = 0
 - = 5 3x - y4x + 6y - z = 16Press enter
- 6. The resulting solution matrix will be displayed.
- 7. To enter another system of equations you may repeat the above Steps 2 through 5 or press twice to highlight the command. Press [enter]. Go to each element and press (e) to delete the previous value and enter the new value. Use the tab key to move from element to element. When completed, press enter.

1

8. Identify the system as consistent (dependent or independent) or as inconsistent. Give the geometric interpretation of the solution as a point, a line, or having no common intersections.

Given System	Reduced Row- Echelon Form	Type of System	Solution	Geometric Interpretation
x + 2y + 2z = 0				-
3x - y = 5				
4x + 6y - z = 16				

- 9. How do you know when a matrix is in reduced row-echelon form?
- 10. What does the last column of the reduced row-echelon matrix represent?
- 11. Solve the following systems. Identify the system as consistent (dependent or independent) or as inconsistent. Give the geometric interpretation of the solution as a point, a line, or having no common intersections.

Given System	Reduced Row-	Type of	Solution	Geometric
	Echelon Form	System		Interpretation
a.				
x + y + z = 6				
-3x + 2y + z = 4				
x -3y +2z = 1				
b.				
2x - y + z = 1				
x + 2y - z = 3				
x +7y -4z = 8				
С.				
x + 2y + 3z = 4				
2x - 3y + z = 5				
3x - y + 4z = 9				
d.				
2x + y - z = 3				
-3x + 2y + z = 4				
4x + 2y - 2z = 8				

12. In a reduced row-echelon solution matrix:

-U	Solving Systems Using Row Operations 2	Name
	Student Activity	Class

- a. Why does a last row of 0 0 0 1 indicate no solution?
- b. Why does a last row of 0 0 0 0 indicate a dependent system?
- c. Explain what types of systems result when the main diagonal does not consist entirely of 1s.
- 13. For each of the following types of systems, fill in the blank with the appropriate geometric interpretation. When solving a system of three equations with three unknowns,
 - a. a consistent and independent system results in a/an ______.

b. a consistent and dependent system results in a/an ______.

c. an inconsistent system results in _____.