Dimensions and Area

Introduction

In this activity, students discover the relationship between a change in the dimensions of a rectangle and the change in the corresponding area.

Grades 6-8

NCTM Measurement Standards

- Understand measurable attributes of objects and the units, systems, and processes of measurement
- Understand relationships among units and convert from one unit to another within the same system

Files/Materials Needed

Rectangle.act

a. Launch Tl-Navigator ${ }^{\text {TM }}$ on the computer and start the session.
b. Have each student log into NavNet on their calculator.

2
a. Load the Rectangle.act activity settings file into Activity Center. This sets up Activity Center to display a grid with a rectangle superimposed on it.
b. Instruct students to determine the area of the rectangle in square units.
c. Start the activity and have students enter the number 1 under RECT and its corresponding area under AREA.

3

a. Pause the activity and click on the Edit Window Settings icon. Change X Scale and Y Scale to 2.
b. Resume the activity and ask students to once again determine the area of the same rectangle with different units.
c. Students should enter the number 2 under RECT and its corresponding area under AREA.
a. Pause the activity again and click on the Edit Window Settings icon. Change X Scale and Y Scale to 1.
b. Resume the activity and ask students to once again determine the area of the same rectangle with these new units.
c. Students should enter the number 3 under RECT and its corresponding area under AREA. Have students send their data for all three rectangles.
a. Stop the activity and click on the List tab to display student data.
b. Verify that students found Rectangle 1 to have an area of 24 square units, Rectangle 2 to have an area of 96 square units, and Rectangle 3 to have an area of 384 square units.
c. Using Quick Poll (with Open Response), ask students by what factor the area increased when the length of the measurement unit in the first rectangle was decreased by a factor of 2 to give the measurement unit for the second rectangle. They should respond that the number of square units increased by a factor of 4 (since $96 \div 24=4$).
d. Using Quick Poll again, ask students by what factor the number of square units increased from the first rectangle to the third rectangle when the measurement unit was decreased by a factor of 4 . They should realize that it changed by a factor of 16 (since $384 \div 24=16$).

Dimensions and Area

5

Elicit from students that, if the length of measure used to calculate the area of an object is reduced by a factor of a, then the corresponding area measured with this smaller unit of measure is increased by a factor of a^{2}. To make this point clear, ask students the following question:

- A rug has an area of 15 square feet. What is the area of the rug measured in square inches?

Students should realize that area in square inches is $15 \cdot 12^{2}=15 \cdot 144=2160$.

EXTENSION

6
The above activity can be reversed to show that an increase in the size of the measurement unit has a corresponding decrease in the area of the object being measured. For example, switching from square feet to square yards reduces the number of square units by a factor of 9 (since $3^{2}=9$).

For an additional challenge, ask students what they think will happen to the volume of an object when the measurement unit changes by a certain factor. (The volume changes by the cube of the factor by which each dimension changes.)

