Nspire Activity: It's the Law!!

In this activity you will look at triangles where two sides and an included angle (SAS triangles) are given. You will derive a formula to determine missing sides & angles for this type of triangles.

1. State the Pythagorean Theorem relating the sides in a right triangle.

- 2. Based on the Pythagorean Theorem, determine the value of $a^2 + b^2 c^2$ for the right triangle.
- 3. Suppose sides 'a' and 'b' <u>stay constant</u> and angle C becomes an <u>acute</u> angle. Predict whether the value of ' $a^2 + b^2 c^2$ ' will be positive, negative, or zero. Explain.
- 4. Suppose sides 'a' and 'b' <u>stay constant</u> and angle C becomes an <u>obtuse</u> angle. Predict whether the value of ' $a^2 + b^2 c^2$ ' will be positive, negative, or zero. Explain.

5. Open the document 'lawofcos' and move to page 1.2. You will see \triangle ABC with side lengths calculated. The measurements for segment 'a' (= 3) and segment 'b' (=5) have been locked so they will not change. The value for $a^2 + b^2 - c^2$ has also been calculated. Verify your predictions from #3 and #4 by dragging on vertices of \triangle ABC to make angle 'C' acute and obtuse.

- 6. Continue dragging on a vertex of \triangle ABC and observe the range of values that $a^2 + b^2 c^2$ takes on for all possible measures of angle C. Write the set of values observed in <u>interval notation</u> below.
- 7. Move to page 2.1. You will see the same triangle and measurements from the previous page. There is also a graph below. You will observe the scatterplot that is formed when 'x' is represented by the measure of angle C and 'y' is represented by the value $a^2 + b^2 c^2$. (*You should see a point currently plotted at (90°, 0) to represent 'x' and 'y' when angle C is equal to 90°*).
- 8. Grab point A and slowly drag the point so that angle C takes on a range of measurements in the interval (0°, 180°). Observe the graph formed at the bottom of the page.

What type of function would best fit this data? <u>*Explain*</u> *your choice and state properties of the graph that support your choice.*

9. Make a sketch of the graph you see at the bottom of page 2.1 below. Then, write an appropriate trig function that best fits this data.

Sketch:			Function:	
-20				
	90°	180°		
-20				
20				

10. Using your function written above, set up an equation by substituting expressions for 'x' and 'y' based on what 'x' and 'y' represent. The variable definitions are re-written below.

```
'x' = measure of angle C 
'y' = a^2 + b^2 - c^2
```

- 11. At this point you should have one numeric coefficient remaining in your equation. Recall that 'a' = 3 and 'b' = 5. How does the <u>remaining coefficient</u> in your equation relate to the values for these two fixed sides?
- 12. Re-write the coefficient in your equation in terms of 'a' and 'b' and re-write the equation below.

13. Now, solve your equation in step #12 for c^2 . This is the Law of Cosines!!

Law of Cosines: