Tangent Challenge

Student Activity

$\begin{array}{llllll}7 & 8 & 9 & 10 & 11 & 12\end{array}$

Student

Problem Statement

A circle of radius 1 unit is drawn such that it is centred at point $Q(1,0)$.

A square is also drawn with vertices $\mathrm{A}(0,0) ; \mathrm{B}(2,0) ; \mathrm{C}(2,2)$ and $D(0,2)$.

The line DP passes through D and is tangent to the circle at point P. (Shown opposite)

Aim: Determine the equation to the line DP.
Question: 1.
Determine the equation to the circle.
Question: 2.

Use your circle equation to determine a relationship between m and n . [Equation 1]

Question: 3.

Determine the gradient of the circle in terms of m and n at the point P.

Question: 4.

Determine the gradient of the line DP in terms of m and n by consideration of the y intercept.

Question: 5.

Combine the results from Q4 and $Q 5$ to form a new equation. [Equation 2]

Question: 6.

Use simultaneous equations to determine the values of m and n , hence determine the equation to the line DP .

Question: 7.

Determine the length of segment DP and discuss the results from a Geometrical perspective.

