# **Mental Maths - Answers**



# ACMNA151

**7 8** 9 10 11 12

## **Objective**

Use a visual representation of the distributive law to improve mental computation strategies.

## Equipment

For this activity you will need:

- TI-Nspire
- TI-Nspire file: "Mental Maths" (tns)

### Instructions

step = 0

Open the TI-Nspire file: "Mental Maths" Navigate to page 1.2. Make sure the sliders are set as follows: a = 5 b = 6



The overall shape is a rectangle; its area is equal to 15 x 16.

The rectangle is broken up into a square (A1: 10 x 10) and three smaller rectangles A2, A3 and A4.

#### Question: 1.

Change the **step** value to 1. Which shape is visible and what is its area? Area A1 = 100

#### Question: 2.

Change the step value to 2. Which shape is visible and what is its area? Area A2 = 50

#### Question: 3.

Change the step value to 3. Which shape is visible and what is its area? Area A3 = 60

#### Question: 4.

Change the step value to 4. Which shape is visible and what is its area? Area A4 = 30

#### **Question: 5.**

What is the total area: A1 + A2 + A3 + A4? Compare your result with 15 x 16. 15 x 16 = 240 (Same)

Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P. Fox





**TI-Nspire** 



Investigation



Student

50 min

#### **Question: 6.**

Use the diagram on the calculator to help complete the following table:

| Expression | A1            | A2          | A3          | A4         | Answer (total) |
|------------|---------------|-------------|-------------|------------|----------------|
| 14 x 17    | 10 x 10 = 100 | 4 x 10 = 40 | 7 x 10 = 70 | 7 x 4 = 28 | 238            |
| 13 x 15    | 10 x 10 = 100 | 3 x 10 = 30 | 5 x 10 = 50 | 3 x 5 = 15 | 195            |
| 14 x 19    | 10 x 10 = 100 | 4 x 10 = 40 | 9 x 10 = 90 | 4 x 9 = 36 | 266            |
| 16 x 18    | 10 x 10 = 100 | 6 x 10 = 60 | 8 x 10 = 80 | 6 x 8 = 48 | 288            |
| 16 x 17    | 10 x 10 = 100 | 6 x 10 = 60 | 7 x 10 = 70 | 6 x 7 = 42 | 272            |

#### Question: 7.

Use the diagram on the calculator to help complete the following table. Comment on any short-cuts for working with perfect squares.

| Expression | A1            | A2          | A3          | A4         | Answer (total) |
|------------|---------------|-------------|-------------|------------|----------------|
| 12 x 12    | 10 x 10 = 100 | 2 x 10 = 20 | 2 x 10 = 20 | 2 x 2 = 4  | 144            |
| 13 x 13    | 10 x 10 = 100 | 3 x 10 = 30 | 3 x 10 = 30 | 3 x 3 = 9  | 169            |
| 14 x 14    | 10 x 10 = 100 | 4 x 10 = 40 | 4 x 10 = 40 | 4 x 4 = 16 | 196            |
| 15 x 15    | 10 x 10 = 100 | 5 x 10 = 50 | 5 x 10 = 50 | 5 x 5 = 25 | 225            |
| 16 x 16    | 10 x 10 = 100 | 6 x 10 = 60 | 6 x 10 = 60 | 6 x 6 = 36 | 256            |

A symbolic representation of the distributive law is included on Page 2.2. Two digit numbers are once again disassembled and considered as a combination of 'tens' and 'units'.

| Navigate to page 2.2 and adjust the corresponding sliders to produce: 15 x 16 | 1.2 2   | 2.1 2.2      | ▶ Mentall | vlaths 🗢 | K 🛛 🗵       |
|-------------------------------------------------------------------------------|---------|--------------|-----------|----------|-------------|
|                                                                               |         | 15 ×         | 16        |          |             |
| Adjust the 'step' to 0 and then proceed through each step to                  | ()      | 10 + 5 ) × ( | (10+6)    |          | 10 	imes 10 |
| see how the distributive law works.                                           |         | 1            | 1         |          |             |
|                                                                               |         | < > 9        | tep =1.   |          |             |
|                                                                               | Tens    | Units        | Tens      | Units    |             |
|                                                                               | ^       | ^            | ^         | ^        | k           |
|                                                                               | $\sim$  | ~            |           | $\sim$   |             |
|                                                                               | First N | lumber       | Second    | Number   | 6           |

© Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

#### **Question: 8.**

Use the interactive diagram for the distributive law to help complete the following table:

| Expression | Step 1        | Step 2      | Step 3       | Step 4     | Answer (total) |
|------------|---------------|-------------|--------------|------------|----------------|
| 13 x 15    | 10 x 10 = 100 | 10 x 5 =50  | 3 x 10 = 30  | 3 x 5 = 15 | 195            |
| 23 x 35    | 20 x 30 =600  | 20 x 5 =100 | 3 x 30 = 90  | 3 x 5 = 15 | 805            |
| 34 x 52    | 30 x 50 =1500 | 30 x 2 =60  | 4 x 50 = 200 | 4 x 2 = 8  | 1768           |
| 96 x 23    | 90 x 20 =1800 | 90 x 3 =270 | 6 x 20 = 120 | 6 x 3 = 18 | 2208           |
| 82 x 31    | 80 x 30 =2400 | 80 x 1 =80  | 2 x 30 = 60  | 2 x 1 = 2  | 2542           |

#### **Question: 9.**

Use the interactive diagram for the distributive law to help complete the following table. Comment on any short-cuts for working with perfect squares.

| Expression | A1             | A2           | A3           | A4         | Answer (total) |
|------------|----------------|--------------|--------------|------------|----------------|
| 42 x 42    | 40 x 40 = 1600 | 40 x 2 = 80  | 40 x 2 = 80  | 2 x 2 = 4  | 1724           |
| 53 x 53    | 50 x 50 = 2500 | 50 x 3 = 150 | 50 x 3 = 150 | 3 x 3 = 9  | 2809           |
| 61 x 61    | 60 x 60 = 3600 | 60 x 1 = 60  | 60 x 1 = 60  | 1 x 1 = 1  | 3721           |
| 82 x 82    | 80 x 80 = 6400 | 80 x 2 = 160 | 80 x 2 = 160 | 2 x 2 = 4  | 6724           |
| 76 x 76    | 70 x 70 = 4900 | 70 x 6 = 420 | 70 x 6 = 420 | 6 x 6 = 36 | 5776           |

#### Question: 10.

Use traditional multiplication techniques to calculate 76 x 76 and compare the calculation **process** with the approach in question 9.

| 76 The first computation is to multiply the 'units' of                                                  | digit of each number: 6 x 6, this is the same  |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|
| $\times$ 76 as step 4 (above). The second computation is a                                              | a 'tens' digit by a 'units' digit and then the |
| other 'units' digit by the corresponding 'tens' d                                                       | igit, this is the same as steps 2 and 3. The   |
| final step is multiplication of the 'tens' digit in t                                                   | both numbers, the same as step 1.              |
| 5320 The difference in these methods is that the sta                                                    | ndard multiplication method includes           |
| 5776 addition processes during multiplication. Both multiplications first, then additions in the last s | methods used on the calculator do all the tep. |

**Comments:** Students should identify that the processes are similar with regards to the multiplication of each digit. Student should use appropriate terminology in their answer. Students may also use diagrams to help explain differences and similarities. From a learning perspective, the examples provided on the calculator encourage students to use actual values such as 'seventy times six' rather than 'seven times six' where the seven has lost its place value. Long multiplication also requires students to alternate between multiplication and addition... again however during their addition students often refer to 'carry one' which could mean 'carry ten' or 'carry one hundred'.

© Texas Instruments 2014. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

