Triangle Sides \& Angles
 ID: 8792

Time required
40 minutes

Activity Overview

In this activity, students will explore side and angle relationships in a triangle. First, students will discover where the longest (and shortest) side is located relative to the largest (and smallest) angle. Then, students will explore the Isosceles Triangle Theorem and its converse. Finally, students will determine the number of acute, right, or obtuse angles that can exist in any one triangle.

Topic: Triangles \& Congruence

- Classify triangles by angle measure.
- Prove and apply the Isosceles Triangle Theorem.
- Prove and apply the converse of the Isosceles Triangle Theorem.
- Recognize the relationship between the side lengths and angle measures of a triangle.

Teacher Preparation and Notes

This activity is designed to be used in a high school or middle school geometry classroom.

- This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively. Use the following pages as a framework as to how the activity will progress.
- To download the student TI-Nspire document (.tns file) and student worksheet, go to education.ti.com/exchange and enter "8792" in the keyword search box.

Associated Materials

- TriangleSidesAngles_Student.doc
- TriangleSidesAngles.tns

Suggested Related Activities

To download any activity listed, go to education.ti.com/exchange and enter the number in the keyword search box.

- Application of Angle-Side Relationships (TI-Nspire technology) - 13365
- Is it A Triangle (TI-73 Explorer with TI-Navigator) - 13581
- Exterior \& Remote Interior Angles (TI-Nspire technology) - 13378

Problem 1 - Size and Location of Sides and Angles

Have students open the file and use the slider to step through the directions on page 1.2.

On page 1.2, students will construct a triangle (MENU > Shapes > Triangle) and label the vertices A, B, and C. The vertices may be labeled by typing a letter after placing each point or after the triangle is complete by using the Text tool (MENU > Action > Text).

Next, have students measure the three interior angles of the triangle using the Angle tool from the Measurement menu. To measure an angle, press : 3 (or enter) three times to select the vertices of the triangle, such that the vertex of the angle you are measuring is the second point chosen; i.e., to measure $\angle A$, you can click B, A, C or C, A, B. Then press (or enter) again to anchor the measurement in the desired place.

Direct students to measure the three side lengths of the triangle using the Length tool from the Measurement menu.

Note: To measure a side of the triangle, you must click on the endpoints of the segment. If you click on the side itself, the tool will return the perimeter of the triangle. Or press tab when the cursor is on the side of the triangle and then click the side.

| 1.2 | 1.3 | 1.4 |
| :--- | :--- | :--- | :--- |
| *Triangle Side...les ∇ | | |
| Size and Location of Sides \& Angles | | |
| Label the vertices, A, B, and C. | | |

TI-Nspire Navigator Opportunity: Live Presenter

See Note 1 at the end of this lesson

Now students should drag a vertex of the triangle to change the angle measures and side lengths.
Encourage them to make a conjecture about the sizes and locations of the angles and sides in a triangle.

Size and Location of Sides \& Angles Measure the side lengths with the Length tool

TI-Nspire Navigator Opportunity: Class Capture

See Note 2 at the end of this lesson

Students should be able to answer the question on pages 1.3 and 1.4 based on their observations, concluding that the largest angle is opposite the longest side, and the smallest angle is opposite the shortest side.

Student Worksheet Solutions

1. opposite the longest side
2. opposite the shortest side
3. a. A, B, C
b. A, C, B
4. a. $\overline{B C}, \overline{A C}, \overline{A B}$
b. $\overline{B C}, \overline{A B}, \overline{A C}$

TI-Nspire Navigator Opportunity: Quick Poll and Live Presenter
See Note 3 at the end of this lesson

Problem 2 -The Isosceles Triangle Theorem

Have students to advance to page 2.1 and read the directions.

On page 2.2, an isosceles triangle (two sides with equal lengths) has been constructed.

Students should measure all three angles using the Angle tool, as before.

TI-Nspire Navigator Opportunity: Class Capture

See Note 4 at the end of this lesson

Direct students to drag a vertex of the triangle and observe what happens to the angle measures.

Advancing to page 2.3, they should conclude that a triangle with two congruent sides also has two congruent angles. This is known as the Isosceles Triangle Theorem.

Student Worksheet Solutions

5. Check students' work. Sketches will vary.
6. two congruent angles
7. two congruent sides

Problem 3 - Types of Angles in a Triangle

Have students to advance to page 3.1 and read the directions.

On page 3.2, triangle $A B C$ is drawn with its angle measures displayed.
Students should drag a vertex and notice how many angles of each type can exist in a triangle. They should conclude that a triangle:

- can have three acute angles

- cannot have three right angles
- cannot have three obtuse angles

Challenge them to observe that a triangle can have, at most, one right or one obtuse angle and that a triangle cannot have both a right and obtuse angle.

Student Worksheet Solutions

8.

$\angle \boldsymbol{A}$	$\angle \boldsymbol{B}$	$\angle \boldsymbol{C}$
acute	acute	acute
acute	acute	obtuse
acute	acute	right

9. Yes; Check students' work. Sketches will vary.
10. No; Check students' work. Sketches will vary.
11. No; Check students' work. Sketches will vary.
12. Answers will vary.

TI-Nspire Navigator Opportunities

Note 1

Question 1, Live Presenter
Use Live Presenter to demonstrate to students how to measure the side lengths and angle measures of the triangle.

Note 2

Question 1, Class Capture
Use Class Capture to display the entire classes' triangle drawings to aide in the discussion of the location of longest side and largest angle measurement in a triangle.

Note 3

Problem1, Quick Poll and Live Presenter
You may choose to use Quick Poll. to gather the student responses for the question, for students not obtaining the correct answer, Use Live Presenter on the previous page to further illustrate the concept.

Note 4

Problem2, Class Capture
You may choose to use Class Capture to monitor student progress as they work through the remaining activity

