Teacher Information (Continued)

Activity 10

Functioning on Your Own

Answers to Instructions: Part A

1. $x=2.00365$

Answers to Instructions: Part B

1. implicit derivative $=\frac{-x^{2}}{y^{2}}$
2. $m=\frac{-4}{9}$
3. equation $=y-3=\frac{-4(x-2)}{9}$
4. $x^{2} y+x y^{2}=12$ at $(-4,1)$ has tangent line $y=\frac{7}{8} x+\frac{9}{2}$
$x^{2}+y^{2}=25$ at $(3,4)$ has tangent line $y=\frac{-3}{4} x+\frac{25}{4}$.
$x=\cos (y)$ at $(\sqrt{2} / 2, \pi / 4)$ has tangent line
$y=-\sqrt{2} \cdot x+\pi / 4+1$.

Answers to Instructions: Part C

2. equation of related rates $=$

$$
\begin{aligned}
& 2 s \cdot \frac{d s}{d t}=2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t} \\
& s=\sqrt{x^{2}+y^{2}}=\sqrt{50^{2}+120^{2}}=130 \\
& \frac{d s}{d t}=\frac{x \cdot d x|d t+y \cdot d y| d t}{\sqrt{x^{2}+y^{2}}}=\frac{50 \cdot 24+120 \cdot 18}{\sqrt{50^{2}+120^{2}}}=\frac{336}{13} \approx
\end{aligned}
$$

$25.8 \mathrm{mi} / \mathrm{hr}$
3. $d s=\frac{d s}{d t}=\frac{336}{13} \approx 25.8 \mathrm{mi} / \mathrm{hr}$

Teacher Information (Continued)

Activity 10

Functioning on Your Own

(Continued)

Answers to Extra Practice

1. Differentiate both sides of $x^{2}+y^{2}=18^{2}$ with respect to t to obtain
$2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t}=0 \Rightarrow \frac{d y}{d t}=\frac{-x \cdot d x \mid d t}{y}=\frac{-x \cdot d x \mid d t}{\sqrt{18^{2}-x^{2}}}$
$=\frac{-10 \cdot 6}{\sqrt{18^{2}-10^{2}}}=\frac{-15 \sqrt{14}}{14} \approx-4.0 \mathrm{ft} / \mathrm{sec}$
2. Because $V=1.3 \pi * r^{3}$, and $h=r$ is constant for the problem,
$V=\frac{\pi \cdot h^{3}}{3} \Rightarrow \frac{d V}{d t}=\pi \cdot h^{2} \cdot \frac{d h}{d t} \Rightarrow 10=\pi \cdot 6^{2} \cdot \frac{d h}{d t} \Rightarrow$
$\frac{d h}{d t}=\frac{5}{18 \pi} \approx 0.09 \mathrm{ft} / \mathrm{sec}$
