According to the Standards:

Instructional programs from preK-grade 12 should enable students to:

- Recognize and use connections among mathematical ideas
- Use the language of mathematics to express mathematical ideas precisely
- Select, apply and translate among mathematical representations to solve problems

In grades $\mathbf{9 - 1 2}$ students should

1. Students should develop an increased capacity to link mathematical ideas and a deeper understanding of how more than one approach to the same problem can lead to equivalent results.

Calculus Scope and Sequence: Applications of Derivatives
Keywords: optimization, maximum, minimum, applications
Description: This activity will illustrate the idea of using the derivative to find a solution to an optimization problem

A farmer wishes to fence in a rectangular field of 10,000 square feet. The north-south fences will cost $\$ 1.50$ per foot, while the east-west fences will cost $\$ 6.00$ per foot. Find the dimensions of the fence that will minimize the cost.

- Set up the cost function in terms of one variable
- Find the derivative of the cost function
- Find the critical points on the derivative, check for max, min using the second derivative
- Confirm the point graphically.

The Derivative is found from the Homescreen in F3-Calc-\#1
Syntax: d (function, variable)
The Solve function is found from the Homescreen in F2-Algebra-\#1
Syntax: solve(expression = expression, variable)

User Tips:

1. You can store the function in the $Y=$ screen to make it easier to use
2. You can copy and paste a result from the homescreen by using the Up Arrow to highlight it and then pressing ENTER to paste it into the edit line. (You can also use the copy \& paste functions in the F1-Tools menu)

In this problem we let $x=$ east-west dimension and $y=$ north-south dimension

- Therefore $x y=10,000$
- $y=10,000 / \mathrm{x}$
- Cost $=6($ east-west $)+1.5($ north-south $)$
- Cost $=6(2 x)+1.5(2 y)$
- Cost $=12 x+1.5(20,000 / x)$

Finding the Derivative:

Setting the Derivative equal to zero to find the critical points:

Disregard -50 (outside the domain of the problem) and check in the second derivative:

The second derivative is positive, therefore the function has a minimum at $x=50$ in the domain $\mathrm{x}>0$ which is appropriate for the problem.

The answer to the question asked then is 50 feet of east-west fence and 200 feet of northsouth fence.

You can use the graph to visually confirm these dimensions:
Note: Make sure only the cost equation is active, and that you find a reasonable window to see the problem develop.

Extension:

You can show the graphs of the original cost function and the first derivative and compare. However, the window setting required to show both does make it hard to see.

