\qquad

Linear Functions: Slope with Grid

Student Worksheet

Overview

The Overview introduces the topics covered in Observations and Activities. Scroll through the Overview using \square (to review, if necessary). Read each screen carefully. Look for new terms, definitions, and concepts.

Observations

The Observations illustrate the slope of a straight line. Scroll through the Observations using \square (\checkmark to review, if necessary). Read each screen carefully. When you come to a Write an Observation screen, stop and write the answers to the questions on your worksheet.

Observation 1

What do you notice about the slope of straight lines? Write your thoughts.

Activities

The Activities help you practice determining the slope of a line using a grid. You can select from two activities-Screen Cross or Linked Graphing Calculators Screen Cross. Follow these steps to play the activity and complete your worksheet.

1. Make sure you are in the Activities for this section.
2. Highlight an activity using \triangle or \square, and press ENTER.

Note: TI-84 Plus family calculators cannot use the USB unit-to-unit cable (Mini-A to Mini-B USB Cable) for the Linked Graphing Calculators Screen Cross game. All calculators must be linked using the I/O unit-to-unit cable in the I/O port.

Activities (continued)

Scoring: You get two attempts to solve each problem. You earn 2 points for a correct answer on the first try, 1 point for a correct answer on the second try.

You can earn up to 10 points.

Scoring: There are no points awarded in the linked version. You must answer correctly before the next line segment is shown.

The player who reaches the right side of the grid first wins.

Screen Cross

1. Read the directions on the screen, and then press any key to continue.

Note: Repeat steps 2 and 3 for line segments 2 through 5 .
2. Calculate the slope between the two points. Record your work below.
3. Press \triangle or \square to view the choices for the slope (UNDEF $=$ undefined slope). When you think the correct slope is displayed, press ENTER.

segment 1 : \qquad
segment 2 : \qquad
segment 3: \qquad
segment 4: \qquad
segment 5: \qquad
4. What was your score? \qquad

Linked Graphing Calculators Screen Cross

Play Screen Cross against another student. Race another student across the screen by calculating the slopes more quickly than your opponent.

1. Connect two similar graphing calculators using a unit-to-unit cable.
2. Use the grid to help determine the slope of the line segment as quickly as possible.
3. Select the slope as you did in Screen Cross.
4. Who won?

Note: TI-84 Plus family calculators cannot use the USB unit-to-unit cable (Mini-A to Mini-B USB Cable) for this game. All calculators must be linked using the I/O unit-to-unit cable in the I/O port.
\qquad
\qquad

Try－lt！${ }^{\text {TM }}$ on Your TI－83 Plus or TI－73

Draw a line segment with endpoints at $(-2,2)$ and（3，－2）．Use the Line（ command，which draws line segments on the graph screen．

To Do This	Press	Display（TI－83 Plus shown）
1．Exit the Topics in Algebra 1 application and clear the Home screen．	［2nd［QuIT］ 〈EXIT〉 CLEAR	
2．Check to see if any functions or statistical plots are turned on．	\bigcirc	
3．Turn off statistical plots or functions， if necessary． Note：See Tlip ${ }^{\text {TM }}$ 8：Creating a Statistical Plot for more information．	\square, \square ，\square ，or \triangle ENTER to deselect	
4．Display the window format screen．	2nd［FORMAT］	Rectriapglar GC Txesor Hxes of f Eberiot Labelon Exprorit ExFroff
5．Select GridOn．	TI－83 Plus： －\square ENTER TI－73： ENTER	
6．Display the ZOOM menu．These settings set the viewing window automatically． Note：For more information，see 琎 Tlp 5：Adjusting the Viewing Window．	ZOOM	
7．Select ZDecimal． Note：This also displays the graph screen automatically．	TI－83 Plus： 4：ZDecimal TI－73： 8：ZDecimal	

\qquad
Section 1: Slope with Grid
Date \qquad
: Try-It! ${ }^{\text {TM }}$ on Your Tl-83 Plus or TI-73 (continued)

To Do This	Press	Display (TI-83 Plus shown)
8. Select the DRAW menu.	TI-83 Plus: 2nd [DRAW] TI-73: DRAW	
9. Select the Line(command, which draws line segments on the graph screen.	2:Line(
10. Move the cursor to $(-2,2)$. 11. Set the endpoint $(-2,2)$.	$\square, \square, \square$, or \square ENTER	
12. Move the cursor to (3,-2). 13. Set the other endpoint $(3,-2)$. The line segment is drawn.	$\square, \square, \square$, or \triangle ENTER	
14. Clear your drawing with CIrDraw, if desired.	TI-83 Plus: 2nd DRAW 1:CIrDraw TI-73: DRAW 1:CIrDraw	

\qquad
\qquad

[e] Try-lt! ${ }^{\text {TM }}$ on Your TI-83 Plus or TI-73 (continued)

Draw the Slopes!

1. On your graphing calculator, use Line to draw segments that have the following slopes (m), and then copy the graph onto the screens below.
a. $\quad m=1 / 2$
b. $m=2 / 4$

c. $m=3 / 2$
d. $m=-2 / 3$

2. Compare your graphs with others in your class. Do you all get the same graph? If not, why?
\qquad
\qquad
\qquad
3. Compare the four segments drawn. Record your observations.
\qquad
\qquad
\qquad
\qquad

Linear Functions: Slope with Grid

Objectives

- To impose a grid on a line to quantify the steepness of a line.
- To introduce slope as the ratio of the vertical change divided by the horizontal change.
- To illustrate the slope characteristics of lines as positive, zero, negative, or undefined (no slope).
- To associate the terms with the appropriate graph of a line: increasing, horizontal, decreasing, or vertical.
- To observe that the slope of a straight line is a constant.

Math Highlights

This section defines slope as the steepness of a line. It begins with a bike riding along a piecewise linear path. Students see the definition of slope as a ratio:

$$
\text { Slope }=m=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{\text { rise }}{\text { run }}
$$

A grid is imposed on the bike path to help illustrate how students can quantify the slope of each line segment. Next, lines with positive, zero, negative, and no slope are illustrated.

Common Student Errors

- Students may have difficulties counting the spaces between grid points; therefore, they may count the grid points instead of the spaces. For example, students who count grid points may think that the slope shown on the screen below is $7 / 4$ instead of $6 / 3$. Using a Geoboard or grid paper, redraw the line segment to help these students count the distance between the grid points rather than the points themselves.

- In the screen below, the rise/run of the fourth segment is calculated as $-6 / 5$. For some students, associating "down 6 units, or -6 " with the word rise can be confusing. The use of the terms vertical change or horizontal change helps students understand that change could be up or down, right or left.

Common Student Errors (continued)

- Students can calculate the slope for the fourth segment in four ways.

With the animation to show direction, students usually will begin counting with the upper left-hand point on the segment.

5 spaces to the right (+5) and
6 spaces down (-6)
to get $-6 / 5$

6 spaces down (-6) and
5 spaces to the right (+5)
to get $-6 / 5$

Without the animation to show direction, students may be as likely to begin counting from the lower right-hand point on the segment.

6 spaces up (+6) and 5 points to the left (-5) to get 6/-5
or
or

5 points to the left (-5) and
6 spaces up (+6) to get $6 /-5$

Slope $=m=\frac{6}{-5}=\frac{-6}{5}=-\frac{6}{5}$
All four ways of counting are correct, resulting in the same slope. The Observations reinforce this, stating, "The slope between any two points on a line is always the same ratio."

Student Worksheet Notes with Answers

Overview

Tell students:

1. How to find the Overview, or tell them to review the instructions on the worksheet.
2. How to navigate the application, if they are not yet familiar with the application.
3. To scroll through the Overview on the graphing calculator. Point out the new terms, definitions, and concepts, and tell students to look for them as they go through the Overview.

Observations

The Observations help students understand the slope of a straight line．
If necessary，tell students how to find the Observations for this section．

Activities

SELECT FIII FTETIUITT
WFA 1．SGFEE［I CFISS
틀 FII口 THE SLDFE EETHEEIT THE GIVE』 Enidedits．

SELECT \＆FFESS［ELITEFi］草
Scoring：Students get two attempts to solve each problem．They earn 2 points for a correct answer on the first try， 1 point for a correct answer on the second try．

Students can earn up to 10 points．

Scoring：There are no points awarded in the linked version．Students must answer correctly before the next line segment is shown．

The player who reaches the right side of the grid first wins．

Observation 1
Students write what they observe about the slope of straight lines．
Answers may vary．Students observe that a line has constant slope．

Screen Cross

Tell students to：
1．Read the directions on the screen，and then press any key to continue．

Note：Repeat steps 2 and 3 for line segments 2 through 5 ．
2．Calculate the slope between the two endpoints．Record their work．

3．Press \square or to view the choices for the slope（UNDEF $=$ undefined slope）．When they think the correct slope is displayed，press ENTER．

4．Record the endpoints and slopes for each segment and their final score．The segments are different on each graphing calculator and each time the game is played．

Linked Graphing Calculators Screen Cross

Tell students to：
1．Connect two similar graphing calculators using a unit－to－unit cable．

2．Use the grid to help determine as quickly as possible the slope of the line segment．

3．Select the slope as they did in Screen Cross．
4．Record which player won．
Note：TI－84 Plus family calculators cannot use the USB unit－to－unit cable（Mini－A to Mini－B USB Cable）for this game．All calculators must be linked using the I／O unit－to－unit cable in the I／O port．

瞱 Try-It! ${ }^{\text {TM }}$ on Your TI-83 Plus or TI-73

Students follow the example, which covers drawing a line on the graph screen from specified endpoints using the Draw menu.

Draw the Slopes!

1. These are sample answers only. Segment location varies depending on the starting point used.

2. Students should notice that their segments are not necessarily the same as others depending on the starting point used. Later, they will see that the slope and a point determine a line.
3. Students should notice that $1 / 2$ and $2 / 4$ have the same steepness. These segments are parallel (or on the same line). They should also observe that segments with slopes, $-2 / 3$ and $3 / 2$, are perpendicular line segments. See graphs above.
