
 

 

Least-Squares Data Fitting 
By Dave Slomer 

 
Have you ever had a physics lab in which you gathered data points that were supposed to 
lie on a line (or a parabola or whatever) only to find that they just didn’t? (In fact, has 
your data ever fit what it was supposed to in an experiment? Don't worry—it's an 
imprecise world!) The data points in an experiment might be those in Table 1, which 
come very close to lying on the parabola 2)( xxf = .  

x 1 2 3 4 
y 1 4 9 15 

Is 2)( xxf = the best model for the data? Maybe. And maybe 29.)( xxf = . Who’s to say? 
 
If you put that data into two lists in your TI-89, it can “fit” various regression models to 
that data. There are 10 different regression models, including QuadReg, short for 
Quadratic Regression. The QuadReg model returned for the given data is 

75.95.75.)( 2 −+= xxxf . As you can see in figures 1a and 1b, the model looks like a 
very good fit, both graphically and analytically, since a perfect fit would be represented 
by an R2 value of exactly 1. 

Fig. 1a  Fig. 1b  
 
But what if you “knew” that the data was supposed to fit a more restricted parabola, a 

model of the form 2)( axxf = ? (Suppose you had measured times for an object falling 
from various heights on the moon to determine its gravitational constant a using the 
model 2ath = .) There is a valuable mathematical technique for finding a “best” equation 
for a given set of data, because the technique gives you the choice of models. This 
technique is the “Method of Least Squares”. 
 
The Method’s process applies the optimization (max-min) theory of calculus to the sum 
of the squares of the vertical distances from each given point to the “given” curve (the 
model). That sum is then minimized. This explains the use of “least” in the Method’s 
name. “Least” is also what “best” really means in the previous paragraphs. It's easier to 
do than the process sounds, especially if you make a sketch, such as the one in figure 2. 

Fig. 2  
• First, plot each given point and label it.  



 

 

• Next, represent the model, 2)( axxf = , by drawing a curve that noticeably misses the 
given points (so you can see the vertical distances involved in the minimization). 

• Now, draw vertical lines from each given point to the curve. 
• Then, find the y-coordinates of the points on the curve at the given x-coordinates. 

Express these in terms of a, since we don’t yet know what a is.  
• Finally, analytically construct the sum. Its format will be as follows, for our four 

points: 

Equation 1:    2222 )                    ()                    ()                    ()                    ( +++=S  

(Inside each set of parentheses should be the vertical distance from a given data point to 
the corresponding point on the curve that we are fitting the data to. There are 4 terms, 
one for each given data point.) 
 
Maybe the following is obvious, maybe not: 
• The sum, S, will be a function of a alone.  

• Since we want to minimize that sum, we will solve the equation 0=
da

dS
. (Why?) 

• For the value of a that we find, we might want to be sure that 0
2

2
>

da

Sd
 (Why?).  

• We should graph S vs. a to see what is really going on in the Least Squares process. 
• We must graph f to see how well it fits the data—a “reality check”. 
 
The process can be tedious, especially if you have a lot of data, but your ’89 will help.  
 

Exercise 1: Fit the data in Table 1 to 2)( axxf = . 
 
First, press F6 (2nd F1) on the home screen to clear all one-letter variables. Turn off or 
clear all Y= functions. Put the data into 2 lists, xx and yy, scatterplot it, and view the 
graph. To do so, on the home screen, give the commands {1,2,3,4}:[[ and then 
{1,4,9,15}:\\��QRWH�WKH�commas). Then give the commands NewPlot 1,1,xx,yy and 
ZoomData. Refer to figure 3a. (You may know other ways to accomplish this.) The 
graph screen will show a scatterplot like the one being traced in figure 3b. 

Fig. 3a   Fig. 3b  
 
With the preliminaries finished, begin the analysis. First, define the model, f(x), and the 
“sum function”, s(a). To do so, key in the commands in figure 4. Note the shortcut for the 
3rd command, highlighted in the command line. 



 

 

Fig. 4  
The ’89 can evaluate a function at every element of a list. So, the command f(xx) would 
return four function values, one for each x-coordinate stored in list xx. Also, 
f(x)–yy would compute and display four vertical distances. Thus, the sum command in 
figure 4 does a lot of behind-the-scenes algebra. It painlessly computes the nasty sum of 
squares that you constructed in Equation 1, above. 
 
To help put it all together, look at the graph of s, the sum-of-squares function that we 
need to minimize. Turn off the scatterplot [on the Y= screen, move the cursor above y1 to the 
Plot1 line and press F4] and define y1 = s(x) (since the ’89 can only graph functions of x). 
Because of the enormity of the coefficients (refer to figure 4), don’t expect a pretty graph 
if you Zoom Decimal or Zoom Standard! Tracing in one of those windows shows that 
ymax should be in the hundreds. 
 
Even without a graph of s, figure 4 shows that s is a concave-up parabola. (Why?) We are 
looking for the x-coordinate of the vertex. (Why?) We could find it via menus on the 
graph screen, but do it on the home screen, via the commands in figures 5a and 5b. Note 
the shortcuts highlighted in the command lines. [We do this on the home screen to 
prepare for Exercises 2 through 5, which deal with regression models with up to six 
parameters (not just a). For those, there will be no graph screen menu help in finding the 
minimum point.] 

Fig. 5a   Fig 5b  
We now know that the sum is minimized when a is 169/177. The Least Squares parabola 

for the data is 2

177

169
)( xxf = . 

 
As a “reality check”, define y1 = f(x) and graph. That function, our model for the given 
data, should appear to hit or just barely miss each data point, just as in figure 1a, but it 
might not actually have exactly hit any (Why?). Of course, the window you are in may 
have some bearing on these appearances. 
 
To summarize, we: 
• defined f(x) to be our model, a*x2.  
• summed the squares of the vertical distances between model and data.  
• stored that sum into s(a).  
• took the derivative of s with respect to a, set it equal to 0, and solved for a. 



 

 

• graphed the least-squares function determined by a, to make sure it fit the data. 
 
 
Exercise 2: Fit the data points in Table 1 to the Least Squares parabola of the 

form baxxf += 2)( . 
 
The procedure will be the same until you take the derivative, because there will be two 
variables in the sum—a and b—and this is probably new to you. But functions of two 
variables can be optimized in much the same way as functions of one variable. The 

concept is called partial derivatives, whose symbols (e.g., 
a

S

∂
∂

) look a lot like those for 

normal derivatives (the TI-89 uses normal derivative notation).  
 
To make a long story shorter than it should be, you will be setting both partial derivatives 

of S equal to 0, solving 0=
∂
∂
a

S
 and 0=

∂
∂
b

S
. While based on mathematics beyond the 

scope of many calculus courses, the mechanics of computing partial derivatives are 
almost as simple as normal derivatives.  
 

To find 
a

S

∂
∂

, for example, “pretend” that b is constant and take the derivative of S with 

respect to a. Then let a be constant and take the derivative of S with respect to b. You 
will have a system of two linear equations in two variables, a and b, which usually isn’t 
too hard to handle, but the coefficients will be nasty. Your ‘89 can help.  
 
The entire process is shown below in the home screen commands in figures 6a through 
6d, but first clear all the one-letter variables (F6). The command line in figure 6c is too 
long to fit. It says solve( ans(2)=0 and ans(1)=0 , {a,b} ) in TI-89 syntax. In 
mathematical terms, it says, “Solve the system of equations defined by the last two 
commands [the partial derivative calculations in figure 6b] with respect to a and b.” 

Fig. 6a  Fig. 6b  

Fig. 6c  Fig. 6d  



 

 

After 7 commands, we have a solution: 
86

21

258

241
)( 2 += xxf  is the Least Squares 

parabola of the form baxxf += 2)( that fits the data. [The TI-89 is a fine piece of machinery, 

isn’t it? (Do the process by hand to really appreciate what it did for you!)] 
 
(After doing some calculus that may be beyond the scope of your calculus class, you 
really need to look at a graph to SEE that it all DOES make sense! Make y1=f(x), turn 
back on the scatterplot, and view the graph. You should see a “good fit” to the data, 
similar to Figure 1a.) 
 
To try to see that the partial derivatives of a function of two variables just might actually 
find some sort of minimum on the function’s graph, set MODE  for Graph to 3D, then 
define z1=s(x,y), set the window and Graph Format (F1  8) as in figure 6e, and look at 
the graph (fig. 6f). 

Fig. 6e   

Fig. 6f  

It sure looks like (a,b) could be a low point (minimum) on the graph of z1, doesn’t it? 
And don’t the equation, (partial) derivatives, and graph of z1 somewhat resemble those 
of parabolas, which, in two dimensions, have unique maxima or minima? Least Squares 
does work in 3D, too! 
 
 
Exercise 3: Repeat the process for the parabola cbxaxxf ++= 2)( .  This time, you will 
have three equations in three variables.  
 
Similar to Exercise 2, after finding the 3 partial derivatives, could give the command 
solve( ans(1)=0 and ans(2)=0 and ans(3)=0 , {a,b,c} ) to find a, b, and c. Did you get 
what the ’89 did in the second paragraph of this activity? Guess the ’89 does use the 
Least Squares Method for some of its regression models! 
 
 
Exercise 4: Visit the internet at http://lib.stat.cmu.edu/DASL/Datafiles/appliancedat.html, 
one of the TI-Interactive data pages, which contains data for appliance sales [in 
thousands] between 1960 and 1985. Put the data into 2 lists on your ’89. Then use either 
the built-in regression models to find one that fits best and devise your own model.   
 



 

 

Your own model may as well be something the ’89 can’t do, such as a 5th degree 
polynomial—most of that data wiggles at least that much. Refer to figure 8 for a 
scatterplot of the dishwasher data, where the thick graph is that of the Least Squares 5th 
degree polynomial ( gexdxcxbxaxxf +++++= 2345)( ) and the thin graph is that of 
the ‘89’s QuartReg model (4th degree). Which looks like a better fit?  

Fig. 8  
(If you have access to TI-Interactive software and a TI GraphLink cable, you can go to 
the web page mentioned earlier and load the data into your calculator, but you may prefer 
to just type it in.) 
 
Since the data only goes up to 1985, see if you think your model (or the ‘89’s, for that 
matter) can come close to predicting the number of dishwashers sold in 2000. To do so, 
you would compute f(40) and/or RegEq(40) if you choose to make 1960 “year 0”, as was 
done below. Do you think either answer is reasonable? Why? Which model (if either) do 
you think would give the best estimate of sales for 1986? 1990? 1959? 1955?  
 
This process of trying to predict results outside the range of data is called extrapolation. 
Write a paragraph or two about extrapolation based on your findings in the previous 
paragraph. 
 
 
Exercise 5: “Lose” 6 years’ data from the appliance data, such as from 1970 through 
1975. Fit the same 5th degree model to the data and see how well the new model can 
predict what the sales were in each of the “lost” 6 years. This process of trying to predict 
results inside the range of data is called interpolation. Write a paragraph or two about 
interpolation, comparing and contrasting with extrapolation. 
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