Preparation for CAS Problem Solver: Fraction Machine USING DEFINE, SOLVE AND SUBSTITUTION ON TI-89 CAS:

PART A

1. What do you notice about the following pairs of fraction calculations?

$\frac{3}{5}-\frac{3}{8}$	$\frac{3}{5} \times \frac{3}{8}$
$\frac{4}{7}-\frac{4}{11}$	$\frac{4}{7} \times \frac{4}{11}$
$\frac{3}{4}-\frac{3}{7}$	$\frac{3}{4} \times \frac{3}{7}$
$\frac{5}{8}-\frac{5}{13}$	$\frac{5}{8} \times \frac{5}{13}$
$\frac{6}{5}-\frac{6}{11}$	$\frac{6}{5} \times \frac{6}{11}$

2. Find some other pairs of fractions whose difference is equal to their product.
3. Suppose that a and b are positive integers. Form a fraction $\frac{a}{b}$. Use your CAS calculator to answer the following question: What is the fraction that when subtracted from $\frac{a}{b}$ or multiplied by $\frac{a}{b}$ produces the same answer?

Calculator Hint:

-solve[$\left[\frac{3}{b}-f=\frac{3}{b} \cdot f, f\right]$

4. a) Take a pair of distinct positive integers. Form a fractional number bigger than 1 by dividing the larger by the smaller.
b) Form a new fraction whose numerator is the same as your first fraction and whose denominator is the difference of your two original integers.
c) You now have two fractions. Consider their sum and their product. What do you notice? Can you explain?
d) Use your CAS calculator to generalise your answer to part c).

Calculator steps for part d:

Clear a-z first

Define $f_{1}=\frac{a}{b}$
Define $f_{2}=\frac{a}{a-b}$

Find the general expressions for:

$f_{1} \times f_{2}$

$$
\frac{a^{2}}{a \cdot b-b^{2}}
$$

- $41 \cdot+2$ $\frac{a^{2}}{(a-b) \cdot b}$

PART B

Example: The algebraic fraction is defined as $f_{r}=\frac{f+\frac{1}{f}}{1-f^{2}}$.

1. Use Define function on your calculator to define f_{r}.
2. Use the substitution feature on your calculator to find the values of f_{r} for the following pairs of fractions $f: \frac{1}{2},-\frac{1}{2} ; \frac{1}{4},-\frac{1}{4} ; \frac{1}{5},-\frac{1}{5} ; \frac{3}{7},-\frac{3}{7}$.

- Lefinに fr $=\frac{f+\frac{1}{f}}{1-f^{2}} \quad$ Lerte
$\square \mathrm{fr}^{\circ} \mid f=\{1 / 2-1 / 2\}$
$\frac{\langle 10 / 3-10 / 3\rangle}{\frac{f r}{4 \times 1 / \mathrm{f}}=\left\langle 1 / Z_{2}-1 / 2\right\rangle}$
$[$ Ftis

3. Look closely at the results. What do you notice? Write down a statement which will summarise what happens.
4. Now find the values of f_{r} for the following pair of fractions: $f=\frac{a}{b}$ and $f=-\frac{a}{b}$. Fritiln

- $f r \left\lvert\, f=\frac{a}{b} \quad \frac{-\left(a^{2}+b^{2}\right] \cdot b}{a \cdot\left(a^{2}-b^{2}\right)}\right.$
$-f r \left\lvert\, f=\frac{-a}{b} \quad \frac{\left(a^{2}+b^{2}\right) \cdot b}{a \cdot\left(a^{2}-b^{2}\right)}\right.$

5. Copy the results from your calculator. What do you notice?
