Euler Line Guided Investigation

Teacher Notes \& Answers

$\begin{array}{llll}7 & 8 & 9 & 10 \\ 11\end{array}$
$\frac{\text { TI-Nspire }}{\text { TM }}$

Investigation
00
Student

Introduction

The three triangle centres: orthocentre, centroid and circumcentre have many amazing properties, however there is one super property that connects them all! In this activity you will combine your learning from the three activities:

- Circumcentre
- Centroid
- Orthocentre

Spoiler alert: You can the QR code to watch a video and review the three centres and see what happens when all three centres are determined.

Geometry

Open a New TI-Nspire Document and insert a Graphs Application.
Draw a triangle with vertices:

$$
A:(0,0) \quad B:(14,4) \quad C:(2,10)
$$

Question: 1.

Construct and determine equation for the three median lines and hence their point of intersection. (Centroid)
Note: In the diagram shown opposite the median lines have been changed to red dotted lines using the attributes and colour options. The centroid as at point D.

Question: 2.

Construct and determine the equation for the three altitudes and hence determine their point of intersection. (Orthocentre)

Note: In the diagram shown opposite the altitudes have been changed to blue dotted lines using the attributes and colour options. The orthocentre is at point E .

Question: 3.

Construct and determine the equation for the three perpendicular bisectors and hence determine their point of intersection.
(Circumcentre)
Note: In the diagram shown opposite the perpendicular bisectors have been changed to green dotted lines using the attributes and colour options. The circumcentre is at point F.

Question: 4.

Determine the equation to the line passing through points D
 (centroid) and E (orthocentre).

Question: 5.

Determine the equation to the line passing through points E (orthocentre) and F (circumcentre) and comment on the result.

Question: 6.
The triangle vertices are dynamic. Explore what happens to points D, E and F when the original triangle vertices are changed.

Question: 7.

Change vertex C on the original triangle to: (5, 9). Describe what happens to points D, E \& F.

Question: 8.

Let $m_{1}=$ Gradient of line $A B ; m_{2}=$ Gradient of line $B C$ and $m_{3}=$ Gradient of line $A C$.
Determine the following: $-\frac{m_{1} m_{2}+m_{2} m_{3}+m_{1} m_{3}+3}{m_{1}+m_{2}+m_{3}+3 m_{1} m_{2} m_{3}}$

