Ü	<i>t</i> Distributions	Name
	Student Activity	Class

The *t* distribution is used when *n* is small (less than 30) and the population standard deviation is unknown. For a sample size of *n*, the number of degrees of freedom is n - 1.

Problem 1 – Characteristics of the *t* Distribution

Press WINDOW and set the values as shown at the right.

Graph the standard normal distribution: **Y**1 = **normalpdf(X, 0, 1)**.

Then graph the *t* distribution for n = 4: **Y**₂ = **tpdf(X, 3)**.

Note: The **normalpdf** and **tpdf** commands are in the Distribution menu ([2nd] [DISTR]).

The format is (x, degrees of freedom). To help distinguish this graph from the first, make it bold by moving the cursor to the left of **Y2** and pressing ENTER so that a bolder line appears.

1. How does the *t* distribution for n = 4 (d.f. = 3) compare to the normal distribution?

Press \underline{Y} and change Y₂ to a *t* distribution where *n* = 9 (degrees of freedom = 8). Press \underline{GRAPH} . Repeat for *n* = 16 and *n* = 26.

2. What happens as *n* gets larger? Why?

Problem 2 – Comparing Areas

Press Y= and clear the entries. On the Home screen enter **ShadeNorm(–3, 3, 0, 1)** and press <u>ENTER</u> to find and display the area under the standard normal curve that is within three standard deviations of the mean.

ShadeNorm is accessed by pressing 2nd [DISTR] and then moving to the **DRAW** menu. The format is (lower bound, upper bound, mean, standard deviation).

3. What is the value of this area?

-i	<i>t</i> Distributions	Name
	Student Activity	Class

Press (2nd) [DRAW] ENTER to clear the drawing. On the Home screen enter **Shade_t(-3, 3, 3)** and press ENTER to find and display the area between these same points under the *t* distribution. Note: **Shade_t** is in the **DRAW** menu. The format is (lower bound, upper bound, d. f.).

- 4. What is this area?
- 5. In the same way, find the area under the *t* distribution for 8, 15, and 25 d. f.
- 6. What happens to the area and why?

Problem 3 – Critical Values for a t Distribution

To find a critical value for a *t* distribution, use the **invT** command located in the **DISTR** menu. Similar to **invNorm**, **invT** will give the *t*-value associated with a given area to the left of that value. The format for **invT** is (area to the left, degrees of freedom). The format for **invNorm** is (area to the left, mean, standard deviation).

7. Verify that $t_{\frac{\alpha}{2}} \approx 4.303$ for n = 3 at the 95% level. Then

complete the chart by finding each value at the 95% level.

NORMAL	. FLOAT	AUTO	REAL	DEGREE	MP	
DIST		AM				
1:no	rmal¤	>df(
2:no	rmalo	cdf(
3:in	vNorr	n (
4:in	vTC					
5:tp	df (
6:tc	df (
7:χ²	Pdf (
8:χ²	cdf(
9↓Fp	df (
	NORMAL DIST 1:no 2:no 3:in 4:in 5:tP 6:tc 7:X ² 8:X ² 9↓FP	NORMAL FLOAT DISTR DRf 1:normals 2:normals 3:invNorr 4:invT(5:tPdf(6:tcdf(7:%2Pdf(8:%2cdf(9↓FPdf(NORMAL FLOAT AUTO DISTR DRAW 1:normalpdf(2:normalcdf(3:invNorm(4:invT(5:tpdf(6:tcdf(7:%2pdf(8:%2cdf(9↓Fpdf(NORMAL FLOAT AUTO REAL DISTR DRAW 1:normalpdf(2:normalcdf(3:invNorm(4:invT(5:tpdf(6:tcdf(7:%2pdf(8:%2cdf(9↓Fpdf(NORMAL FLOAT AUTO REAL DEGREE DISTR DRAW 1:normalpdf(2:normalcdf(3:invNorm(4:invT(5:tpdf(6:tcdf(7:%2pdf(8:%2cdf(9↓Fpdf(NORMAL FLOAT AUTO REAL DEGREE MP DISTR DRAW 1:normalpdf(2:normalcdf(3:invNorm(4:invT(5:tpdf(6:tcdf(7:%2pdf(8:%2cdf(9↓Fpdf(

$t_{\frac{\alpha}{2}}, n=3$	$t_{\frac{\alpha}{2}}, n=8$	$t_{\frac{\alpha}{2}}, n = 15$	$t_{\frac{\alpha}{2}}, n = 25$	$Z_{\frac{\alpha}{2}}$
4.303				

- 8. If any, what patterns do you see?
- 9. Predict how the following will compare among each other.

50% CI, $t_{\frac{\alpha}{2}}$, n = 4 and n = 2880% CI, $t_{\frac{\alpha}{2}}$, n = 4 and n = 28100% CI, $t_{\frac{\alpha}{2}}$, n = 4 and n = 28

10. Find the six critical values listed above by using the **invT** command.

t Distributions	Name
Student Activity	Class

Problem 4 – Constructing a Confidence Interval

For a *t* distribution, the margin of error for estimating the population mean is given by $E = t_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$.

The weights of 10 randomly selected newborn kittens, in grams, are shown below. Enter these values into L1 by pressing <u>STAT</u> and choosing **Edit**.

98, 107, 101, 102, 94, 103, 105, 97, 99, 102

Press STAT, arrow to the CALC menu, choose 1-Var Stats, and	NU
enter L1.	

11. What is the mean and standard deviation of the weights?

Graph the weights to verify that the distribution is roughly normal. Press [2nd] [STAT PLOT] and select **Plot1**. Match the settings as

Press ZOOM and choose ZoomStat to get an appropriate viewing

shown at the right.

window.

-	1
<mark>1-Var Stats</mark> List:L1 FreqList: Calculate	
NORMAL FLOAT AUTO REAL DEGREE MP	
]
Plot1 Plot2 Plot3]

- **12.** Calculate a 90% confidence interval and a 95% confidence interval for the mean weight of all newborn kittens.

90%: critical value: _____, margin of error: _____, confidence interval: _____

95%: critical value: _____, margin of error: _____, confidence interval: _____

Ten more newborn kittens are randomly selected and weighed. Their weights, in grams, are

97, 104, 92, 96, 100, 105, 103, 95, 92, 109

- 13. Add these weights to list L1. What is the new mean and standard deviation?
- **14.** Calculate a new 90% confidence interval and a 95% confidence interval for the mean weight of all newborn kittens. (n = 20)

90%: critical value: _____, margin of error: _____, confidence interval: _____

95%: critical value: _____, margin of error: ____, confidence interval: _____

Check your confidence intervals by pressing <u>STAT</u>, moving to the **TESTS** menu, and selecting **TInterval**. You have the option of choosing data from a list (choose **Data**) or by entering the sample mean, standard deviation, and sample size (choose **Stats**).