MATHEMATICAL METHODS: UNIT 2

Problem Solving and Modelling

EXPONENTIAL GROWTH AND DECAY – M&M's

USING TI-INTERACTIVE!

ACTIVITY 1 – GROWTH

1. Start this experiment with 4 M & M's in a plastic cup. Shake the cup and pour the M & M's onto the table. Count the number of M & M's that have the M showing. Add a new M & M for each one with an M showing. Using the new total of M & M's each time, repeat the procedure five more times. Open TI-InterActive! and record your data in a spreadsheet as indicated in the diagram below.

Trial Number	Number of M & M's
0	4
1	
2	
3	
4	
5	
6	

Data Editor										
<u>File E</u> dit <u>V</u> iew <u>I</u> nsert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata <u>H</u> elp										
18 🖞 🗳 🛍 📁 🖓 📳 🗐 🗐 2↓ Ζ↓ Σ f∞ 🚫 🖾 - 🏭 🕼 🔡 📾 🤶										
TI Math 🔽 10 🔽 🖪 🗾 🖳 🗹 🚣 🖌										
A9										
	A	В	C	D	E	F	G	Н	I	
1	Trial	Group 1								
2	0	4								
3	1	5								
4	2	6								
5	3	10								
6	4	15								
7	5	22								
8	6	31								
9										-
List ∧ Matrix ∧ Spreadsheet /										
										11

2. Prepare a scatterplot of the data collected. Use the horizontal axis for the trial number and the vertical axis for the total number of M & M's.

3. Use the Statistical Regressions feature to find an exponential function which fits the data. Write the equation in the space provided:

Number =_____

- 4. Copy the equation into the function editor and graph this equation on the same axes as the data.
- 5. Insert a table and use it to predict the number of M & M's on trial number 9. Answer: _____
- 6. Use nSolve to determine the number of trials needed to have 300 M & M's. Answer:
- 7. Explain what the coefficients *a* and *b* represent in the general equation $N = a \times b^x$. State the values that *a* and *b* would take in the "ideal situation."
- 8. Select two data points and set up and solve two simultaneous equations of the form $N = a \times b^x$, where *N* is the number of M&M's, *x* is the trial number and *a* and *b* are constants. Sketch the graph of the function obtained along with the function given by the regression equation on the same screen as the statistical plot of the data.

- 9. Insert a spreadsheet that compares the results obtained. Comment on the accuracy of the models.
- 10. a) Given the "ideal situation," suppose that, instead of adding one M&M each time, two M&M's were added. State the rule which would model this situation:

Number =_____

b) What would the rule be if three M&M's are added each time?

Number =_____

c) What would the rule be in the general case where *m* M&M's are added each time?

Number =_____

ACTIVITY 2 – DECAY

Start this experiment with a cupful of M & M's

 (approximately 80). Shake the cup and pour the M & M's
 onto the table. Count the total number of M & M's. Write
 this as the number for trial number zero (the starting
 value). Remove all M & M's that have the M showing.
 Record the total number of M & M's left in the table
 below. Using the new total of M & M's each time, repeat
 the procedure five more times. Note: if the number of M
 & M's reaches zero at any trial, the experiment is over at
 that time and you should not use the zero result as part of
 your data.

Trial Number	Number of M & M's
0	
1	
2	
3	
4	
5	
6	

2. Prepare a scatterplot of the data collected. Use the horizontal axis for the trial number and the vertical axis for the total number of M & M's.

3. Use the Statistical Regressions feature to find an exponential function which fits the data. Write the equation in the space provided:

Number =_____

- 4. Copy the equation into the function editor and graph this equation on the same axes as the data.
- 5. Assuming that you start with 900 M&M's, how many trials would you need before the experiment is over? Use a table to assist you.

Answer: _____

- 6. Explain what the coefficients *a* and *b* represent in the general equation $N = a \times b^x$. State the values that *a* and *b* would take in the "ideal situation."
- 7. Suppose that, instead of removing one M&M each time, three M&M's are removed.
 - a) Explain why it is impossible to model this situation in a practical context.
 - b) What limits are there on the number of M&M's that can be removed?