Angles Formed by Secants

Name

In this lesson you will investigate the relationship among the angles formed by 2 secants drawn from a common external point, outside a circle.

Open *secants.tns* on your TI-Nspire handheld and follow along with your teacher, using this worksheet as a reference throughout the lesson.

1.1 1.2 1.3 1.4 DEG AUTO REAL

Angles Formed by Secants in a Circle

THEOREM: The measure of an angle formed by two secants intersecting outside a circle is equal to one-half the difference of the measures of the intercepted arcs.

On page 1.2, you will find circle O with secants ABC & ADE, forming arc BD, arc CE, and $\angle A$, each labeled with their measures in degrees. As you drag either of the endpoints of the 2 secants, or angle A, notice how "c – b" changes to reflect the difference of the measures of the 2 arcs. More importantly, take note of the measure of angle A relative to the value of this difference. The constant 2:1 ratio indicates that the measure of the angle is truly one-half the difference of the intercepted arcs.

Applying the Theorem

Now, use the theorem, and the diagrams below, to answer the questions on pages 1.3 to 1.6.

#1.3

Angles Formed by Secants

Geometric Proof

On page 1.8, you are presented with a 2-column proof of the theorem. Complete the theorem by filling in the missing items in both the Statements and Reasons columns.

STATEMENTS	REASONS
1. Circle O with secants ABC and ADE, drawn from a common external point, A.	1. Given
2. $m \angle BCD = \frac{1}{2} m \text{ arc BD and}$ $m \angle CDE = \frac{1}{2} m \text{ arc CE}$	2.
3. $m \angle CDE = m \angle BCD + m \angle A$	3.
4. m∠A =	4. Subtraction
5. m $\angle A = \frac{1}{2}$ m arc CE $-\frac{1}{2}$ m arc BD	5.
6. $m \angle A = \frac{1}{2}$ (m arc CE – m arc BD)	6. Greatest common factor.