\qquad

In this lesson you will investigate the relationship among the angles formed by 2 secants drawn from a common external point, outside a circle.

Open secants.tns on your TI-Nspire handheld and follow along with your teacher, using this worksheet as a reference throughout the lesson.

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1.1</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1.2</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1.3</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">1.4</td>
<td style="text-align: left; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top-style: solid !important; border-top-width: 1px !important; width: auto; vertical-align: middle; ">DEG AUTO REAL</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| 1.1 | 1.2 | 1.3 | 1.4 | DEG AUTO REAL |
| :--- | :--- | :--- | :--- | :--- |</table-markdown></div>
 Angles Formed by Secants in a Circle

THEOREM: The measure of an angle formed by two secants intersecting outside a circle is equal to one-half the difference of the measures of the intercepted arcs.

On page 1.2, you will find circle O with secants $A B C \& A D E$, forming arc $B D$, arc $C E$, and $\angle A$, each labeled with their measures in degrees. As you drag either of the endpoints of the 2 secants, or angle A, notice how "c - b" changes to reflect the difference of the measures of the 2 arcs. More importantly, take note of the measure of angle A relative to the value of this difference. The constant 2:1 ratio indicates that the measure of the angle is truly one-half the difference of the intercepted arcs.

Applying the Theorem

Now, use the theorem, and the diagrams below, to answer the questions on pages 1.3 to 1.6.
\#1.3

Angles Formed by Secants

\qquad

Geometric Proof

On page 1.8, you are presented with a 2 -column proof of the theorem. Complete the theorem by filling in the missing items in both the Statements and Reasons columns.

STATEMENTS	REASONS
1. Circle O with secants ABC and ADE, drawn from a common external point, A.	1. Given
2. $\mathrm{m} \angle \mathrm{BCD}=1 / 2 \mathrm{~m}$ arc BD and $\mathrm{m} \angle \mathrm{CDE}=1 / 2 \mathrm{~m}$ arc CE	2.
3. $\mathrm{m} \angle \mathrm{CDE}=\mathrm{m} \angle \mathrm{BCD}+\mathrm{m} \angle \mathrm{A}$	3.
4. $\mathrm{m} \angle \mathrm{A}=$	4. Subtraction
5. $\mathrm{m} \angle \mathrm{A}=1 / 2 \mathrm{~m}$ arc $\mathrm{CE}-1 / 2 \mathrm{~m}$ arc BD	5.
6. $\mathrm{m} \angle \mathrm{A}=1 / 2(\mathrm{~m}$ arc $\mathrm{CE}-\mathrm{m}$ arc BD)	6. Greatest common factor.

