Absolute Value Function

Student Worksheet

Introduction

The absolute value of a function is defined as the 'unsigned' portion of the number.

$$
|x|= \begin{cases}x & x \leq 0 \\ x & x \geq 0\end{cases}
$$

The sign or signum (Latin for sign) is defined as:

$$
\operatorname{sign}(x)=\left\{\begin{array}{cc}
-1 & x<0 \\
0 & x=0 \\
1 & x>0
\end{array}\right.
$$

The above definitions are related by $|x|=x \cdot \operatorname{sign}(x)$

Exploring Graphs

Open a new TI-Nspire Document and insert a Graph Application.
Sketch the graphs of $y=x$ and $y=|x|$ on the same set of axes.
The equations template contains the absolute value notation or enter:

$$
\operatorname{abs}(x)
$$

Question: 1.

Comment on the relationship between the graphs of $y=x$ and $y=|x|$.
Students should note that the when $x<0$ the graph is reflected in the x axis.
Question: 2.
Graph and compare each of the following:
a. $y=x^{2}-4$ and $y=\left|x^{2}-4\right|$
b. $f(x)=x^{3}-3$ and $|f(x)|=\left|x^{3}-3\right|$
c. $g(x)=\sqrt{(2-x)}-2$ and $|g(x)|$
d. $h(x)=x^{3}-2 x^{2}-4 x+1$ and $|h(x)|$
e. $k(x)=\frac{1}{(x-2)^{2}}-3$ and $|k(x)|$

Question 2a)

Question 2d)

Question 2b)

Question 2e)

Question 2c)

These examples should help students identify the reflection in the x axis associated with $y=f(x)$ and $y=|f(x)|$.

Question: 3.

Generalise your findings with regards to what happens to the graph of $f(x)$ when we want to sketch the graph of $|f(x)|$.

Where $f(x)<0$ the function is reflected in the x axis

Question: 4.

Graph and compare each of the following:
a. $f(x)=x^{2}-2 x+3$ and $f(|x|)=|x|^{2}-2|x|+3$
b. $g(x)=x^{3}+1$ and $g(|x|)=|x|^{3}+1$
c. $h(x)=2^{x}-3$ and $h(|x|)=2^{|x|}-3$
d. $\quad k(x)=\frac{1}{x-1}$ and $k(|x|)=\frac{1}{|x|-1}$
e. $p(x)=\log _{e}(x)$ and $p(|x|)=\log _{e}|x|$

Question 4a)

Question 4d)

Question 4b)

Question 4e)

Question 4c)

These examples should help students identify the following:

Where $\mathrm{x}<0$ in the original function, this region ceases to exist and is replaced by a reflection of the function in the y axis for the region where $x>0$.

In the case of 4(e) students should take special note of the significant change in the domain of the function.

Calculator

Tip!

Time Saving Tip:

Enter the original equation in: $f_{1}(x)$ and then use: $f_{2}(x)=f_{1}(|x|)$

Attributes:

Attributes refers to some of the features or qualities of objects such as graphs. With your mouse over a graph press: Ctrl + Menu and select Attributes. Change the original function to a dotted

Question: 5.
Generalise your findings with regards to the graphs of $f(x)$ and $f(|x|)$.
Where $x<0$ in the original function, this region ceases to exist and is replaced by a reflection of the function in the y axis for the region where $x>0$.

Question: 6.

The graph of the function: $f(x)=2^{|x|}$ can be generated by defining a piece-wise function rather than using the absolute value function. (Refer to the definition of $|x|$ in the introductory section of this activity.)
The function: $f(x)=2^{|x|}$ can be defined as: $f(x)= \begin{cases}2^{-x}, & x \leq 0 \\ 2^{x}, & x>0\end{cases}$
Use your graphics calculator to sketch this piecewise function using the piecewise function entry. Use the absolute value function to generate a second graph to check your answer. Are the two graphs the same?

Drawing three functions may help students understanding of the equivalent transformations and also the piece-wise definition for the absolute value function.
The original function drawn in light blue (shown opposite) is clearly no longer represented in the function: $f(|x|)$.
The piecewise function drawn in black has been made bold so that it is clear that it is equivalent to the graph of $f(|x|)$. Students may also like to press Ctrl + T to produce a table of values to see how/why this relationship exists.

Question: 7.

Given the graph of: $f(x)=\sin x,-2 \pi \leq x \leq 2 \pi$, sketch the graphs of $|f(x)|$ and $f(|x|)$ without a calculator. Check your answers using your calculator.

While no new concepts are included here, it is the first time students have been asked to do both $|f(x)|$ and $f(|x|)$ in the same question and on the same graph for comparative purposes.

Question: 8.

For the graph of $f(x)$ shown opposite, sketch a graph of $f(|x|)$ and $|f(x)|$.

In the absence of an equation students must either determine an approximate equation that resembles the one shown or use their
 understanding to sketch the final results of the transformations.

