

Features Used
[GRAPH], solve(), expand(),
getDenom(), zeros(),
NewProb, [Y=], getNum(),
factor(), $\square, 3 D$ graph, abs(),
[window], cFactor(),
NewData, cZeros(), real(),
imag()
Setup
1, NewFold laplace

Laplace Analysis: The s-domain

This chapter demonstrates the utility of symbolic algebra by using the Laplace transform to solve a second-order circuit. The method requires that the circuit be converted from the time-domain to the s-domain and then solved for $\mathrm{V}(\mathrm{s})$. The voltage, $v(\mathrm{t})$, of a sourceless, parallel, RLC circuit with initial conditions is found through the Laplace transform method. Then the solution, $v(t)$, is graphed.

This chapter also shows how to find and plot the poles and zeros of a circuit's transfer function $\mathrm{H}(\mathrm{s})$ to gain insight to the frequency response.

Topic 27: RLC Circuit

Given the circuit shown in Figure 1, find $v(t)$ for $t>0$ when $v(0)=4 V$ and $i(0)=1$ A.

Figure 1. Simple parallel RLC circuit
Convert the components to their s-domain equivalents. Remember, the time-domain components map to their s-domain counterparts as shown in Figure 2.

Figure 2. Time-domain to s-domain mappings

Note that the initial voltage and current transform into equivalent sources in the s-domain. The circuit in the s-domain is shown in Figure 3.

Figure 3. s-domain equivalent of the circuit in Figure 1
Using Kirchhoff's current law to sum the currents out of the top node, the equation is

$$
\frac{\mathrm{v}}{4}+\frac{\mathrm{v}}{3 \mathrm{~s}}+\frac{\mathrm{v}}{\frac{24}{\mathrm{~s}}}=\frac{4}{24}-\frac{1}{\mathrm{~s}} \rightarrow \mathrm{n} 1
$$

1. Clear the TI-89 by pressing 2nd [F6] 2:NewProb ENTER.
2. Enter the equation above (screen 1).

```
\ddots-5STOD n1
```

3. The s-domain voltage is found with solve($n 1, v$) as shown in screen 2.
```
CATALOG solve(n1\squareva STO` eqn
```

4. Enter expand(eqn) to put eqn in a form for easy calculation of the inverse Laplace transform via a table lookup (screen 3).
This must be an overdamped circuit since there are two real poles. The answer should contain two decaying exponents. From a Laplace transform table, the
 solution is

$$
v(t)=20 e^{-4 t}-16 e^{-2 t} t \geq 0
$$

This answer is in the expected mathematical form. How does $v(t)$ appear as a function of time?
5. To obtain a graph, press $\square[Y=]$ and enter the expression for $\mathrm{v}(\mathrm{t})$ as shown in screen 4 . Note that x is substituted for t using the "with" operator, \square, since the $Y=$ Editor requires equations to be expressed as functions of x.

$$
\mathbf{2 0} \boxtimes \square\left[\mathrm{e}^{x}\right](-) \mathbf{4 t} \square \square \mathbf{1 6 \boxtimes \boxtimes [\mathrm { e } ^ { x }] (-)} \mathbf{2 t} \square \square \mathbf{t} \square \mathbf{x}
$$

6. Now press F2 6:ZoomStd to see the graph (screen 5).

It appears to be a typical overdamped response!
7. To zoom in for a closer look, press [WINDOW] and set the range of \mathbf{x} to be 0 to 4 (screen 6).
8. Now, press \rightarrow GRAPH $]$ to see the graph of $v(t)$ as shown in screen 7.
9. Press F1 9:Format and specify ON for Grid and Labels (screens 8 and 9).

Note: \boldsymbol{x} is substituted for \boldsymbol{t} using the with operator, \square, since the $Y=$ Editor requires equations to be expressed as functions of \boldsymbol{x}.

Topic 28: Critical Damping

Given the circuit of Topic 27, change the value of the resistor so that the circuit will be critically damped.

Assign the resistor value as \mathbf{r} (see Figure 4) and let the TI-89 compute the node voltage $\mathbf{v}(\mathbf{s})$ in terms of \mathbf{r}.

Figure 4. Circuit of Figure 3 with the 4Ω resistor changed to \mathbf{r}
The nodal equation in the s-domain is

$$
\frac{\mathrm{v}}{\mathrm{r}}+\frac{\mathrm{v}}{3 \mathrm{~s}}+\frac{\mathrm{v}}{\frac{24}{\mathrm{~s}}}=\frac{4}{24}-\frac{1}{\mathrm{~s}} \rightarrow \mathrm{n} 1
$$

1. Return to the Home screen, and enter this as shown in screen 10.
$\mathbf{v} \dagger \mathbf{r} \dagger \mathbf{v}$3s \square $+$ $\div($$24 \div$ \mathbf{s} \qquad $4 \div$ $24 \square$ 1 \div sSTO- $n 1$
2. Solve for the node voltage with solve $(\mathbf{n} 1, \mathbf{v}) \rightarrow$ eqn (screen 11).
3. For critical damping, the time constants of the two exponentials of $\mathbf{v}(\mathbf{s})$ must be real and equal. To determine this condition, the two roots of the denominator of $\mathbf{v}(\mathbf{s})$ are found and set equal, and the resulting equation is solved for the required value of \mathbf{r}. Get the denominator with getDenom() as shown in screen 12.

CATALOG getDenom(v eqn STO eqn2
4. Solve for values of s which are the roots of the denominator using the zeros() command as shown in screen 13.

CATALOG zeros(eqn2 \square STOD \mathbf{z}

$$
\mathrm{H}(\mathrm{~s})=\frac{\mathrm{s}^{4}+14 \mathrm{~s}^{3}+74 \mathrm{~s}^{2}+200 \mathrm{~s}+400}{\mathrm{~s}^{4}+10 \mathrm{~s}^{3}+49 \mathrm{~s}^{2}+100 \mathrm{~s}}
$$

find and plot the poles and zeros.

1. Enter $\mathbf{h}(\mathbf{s})$ as shown in screen 16 .

2. A quick way to see the poles and zeros is to factor $\mathbf{h (s)}$ as shown in screen 17 .

CATALOG factor($\mathrm{h} \square$
3. However, since factor() doesn't give complex factors, use cFactor() to get more information about $\mathbf{h (s)}$ (screen 18).

CATALOG cFactor($\mathbf{h} \mathbf{~} \mathbf{\square}$

Press $\odot(-)$ to see the rest of the terms of $\mathbf{h}(\mathbf{s})$. The complete answer is

$$
\frac{(s-2(-3+i))(s-(-1+3 i))(s+1+3 i))(s+2(3+i))}{s(s+4)(s-(-3+4 i))(s+3+4 i)}
$$

5. Set the two roots equal to each other and solve for \mathbf{r} as shown in screen 14.

CATALOG solve(z 2nd [c] $\mathbf{1}$ 2nd []] $\equiv \mathbf{z}$ 2nd [[c] $\mathbf{2}$ 2nd []] $\square \mathbf{r}$

\square
Since negative resistances are not physically possible, the answer must be $\mathbf{r}=3 \sqrt{2}$.
6. To get the floating point approximation, press $\square[\approx]$ as shown in screen 15.

So $\mathbf{r}=4.2$ will give critical damping.

Topic 29: Poles and Zeros in the Complex Plane

Given that

4. getNum() and getDenom() (screen 19) give the numerator and denominator, respectively.

```
CATALOG getNum(h)STOD num
CATALOG getDenom(h)STO` denom
```

The TI-89 automatically expands these terms, so cFactor() must be used again if you want to see the factors.
5. Once the numerator and denominator are separated, the zeros and poles are found by using the cZeros() command (screens 20 and 21).

CATALOG cZeros(denom $\square \mathbf{s} \square$ STO pole

Plotting the poles and zeros takes a few steps.
a. Store the two lists in a data object called $\mathbf{p z}$ (screen 22).
b. pz can't be displayed in the Home screen, but it can be edited by pressing APPS 6:Data/Matrix Editor 2:Open (screen 23).
c. The first column lists the poles; the second column lists the zeros. To help remember this, add labels to each of the columns by pressing $\Theta \odot$ and typing poles ENTER followed by $(1) \odot$ and typing zeros ENTER (screen 24).

Note: To enter getNum() and getDenom() press F2 B:Extract, then 1:getNum(or 2:getDenom(.

The real part of each pole (or zero) provides the x-component and the imaginary part, the y-component in the complex plane.
d. To separate the poles into their real and imaginary parts, first press (1) and type real(c1) ENTER. This makes column c3 the real part of column c1.
e. Then press $(1) \ominus$ imag(c1) ENTER to make column $\mathbf{c 4}$ the imaginary part of c1 (screen 25).
f. Repeat this process for the zeros making column $\mathbf{c} 5$ the real part of c2 ((\uparrow) real(c2) ENTER) and column c6 the imaginary part of $\mathbf{c 2}(\oplus) \ominus$ imag(c2) ENTER). Note that the screen scrolls to reveal c5 and c6 (screen 26).
g. To plot the data, press F2 F1 and fill in the required data as shown in screen 27. Press ENTER.
This will plot the real part of the poles (c3) versus the imaginary part of the poles (c4) as a cross.
h. Press $\odot \mathbb{F 1}$ to set Plot 2 to plot the zeros with boxes (screen 28). Press ENTER.
i. Press \rightarrow [WINDOW] to set the plot ranges (screen 29). Turn OFF Grid and Labels with Δ 1. Turn off the previous graph with $\square \square$.
j. Finally, press \square [GRAPH] to see the poles and zeros graphed in the complex plane (screen 30). This representation is usually called the pole/zero constellation.

Note: Press \square and select a cell width of 5 to see four columns.

Topic 30: Frequency Response

The frequency response that corresponds to the pole/zero constellation in Topic 29 is graphed by noting that

$$
|\mathrm{H}(\mathrm{j} \omega)|=|\mathrm{H}(\mathrm{~s})|_{\mathrm{s}=\mathrm{j} \omega}
$$

1. To do this, press HOME and enter the equation as shown in screen 31.

$$
\text { CATALOG abs(} \mathbf{h} \square \mathbf{s} \square \text { 2nd [i] w STOص eqn }
$$

2. Enter eqn as the function $\mathbf{y} \mathbf{1}(\mathbf{x})$ (screen 32).
```
eqn\ w #x STO` y1|x\square
```

3. Press $\bullet[Y=]$ to verify this. Be sure to deselect plots 1 and 2 in the Y= Editor using F4 (screen 33).
4. Press \square [WINDOW] to set the correct graphing parameters in the Window Editor (screen 34).
5. Press \square [GRAPH] to display the graph of frequency response (screen 35).

Notice that the effects of the pole farthest from the axis can be seen as slight rises near the left and right sides of the graph. The zeros are causing the dips around $\mathbf{x}= \pm 3$, and the pole at the origin is causing the large peak in the middle.

Topic 31: 3D Poles and Zeros

A different perspective of $\mathrm{H}(\mathrm{s})$ is gained from a 3D graph where the z-axis represents the magnitude of $\mathrm{H}(\mathrm{s})$.

1. To do so, press MODE () and select 5:3D (screen 36). Press ENTER.
2. Press $\sim \mathrm{Y}=]$ and enter the function to be graphed (screen 37).

$$
\text { CATALOG } \operatorname{abs}(\mathbf{h} \square \mathbf{s} \boldsymbol{\square} \boldsymbol{+} \text { 2nd [i] } \times \mathbf{y}
$$

3. Press Δ [WINDOW] and set the \mathbf{x}, \mathbf{y}, and \mathbf{z} scales (screen 38). Note that these are the default values, except zmin has been set to 0 .
4. Finally, press \rightarrow [GRAPH] (screen 39). It will take a few minutes for the graph to display. Once the graph is complete, press \square and select AXES and turn ON the Labels.
5. The three poles are clearly visible. Things to try: Press \mathbb{X}, Ψ, or Z to look down the corresponding axis. Use the cursor controls $((1)(\odot) \odot)$ to spin the graph. Press 0 to return to the original view.
6. Press \square and change the Style to HIDDEN SURFACE (screens 40 and 41).

7. Press \square and change the Style to WIRE AND CONTOUR to see contours highlighted on the graph (screen 42). This will take a few minutes to recalculate.
8. Press Z while in WIRE AND CONTOUR mode to view the contours from above (screen 43). Press 0 to return to the original view.
9. Press [WINDOW], set xgrid and ygrid to larger values (25 in this case), and press \rightarrow [GRAPH] to get a smoother graph (screen 44). This also takes a few minutes to recalculate.

Tips and Generalizations

The TI-89's symbolic math capability makes it a good choice for manipulating equations in the s-domain. The key step to plotting on the s-plane (real vs. imaginary) is to use the "with" operator (D) to replace \mathbf{s} with $\mathbf{x}+[i]$ y. Although plotting $|\mathrm{H}(\mathrm{s})|$ is most common, the TI-89 can just as easily plot the angle of $\mathrm{H}(\mathrm{s})$ by entering
angle(h $\square \mathbf{s} \square \mathbf{s} \square \mathbf{x} \square[i] \mathbf{y} \square$.
Although these examples solved for a single node problem with only one equation, $\mathbf{v}(\mathbf{s})$, more complex circuits with more nodes (and therefore more equations) also can be solved.

The TI-89 assisted the conversion from the s-domain to the time-domain by doing the partial fraction expansion. Chapter 7 shows how to find a system's response by staying in the time-domain and using convolution.

