Dynamic Algebra

Dr. René Hugelshofer

Cabri Geometer and Geometer Sketchpad showed us the astonishing effects that can be produced by dynamical change of the base objects. A classical problem leads to new perceptions and visual thinking (e.g. the way an ellipse can be transformed via a parabola to a hyperbola). There is a lack of interesting problems for the use of CAS-calculators (CAS = computer algebra system). Parameterisation is an easy way to create attractive and challenging problems derived from classical ones. Such problems will lead students to a new way of thinking, similar to the geometrical approach described above.
I would like to demonstrate the method with the following examples. Examples of this kind can be found in any classical exercise book.

Classical problem 1: Fractional equation

Solve: $\frac{x}{2 x-8}+\frac{x-6}{x-4}=\frac{3}{2}$
Store the equation in eq and solve it with solve(eq, x)!
Result: \quad TRUE. All $\mathrm{x} \in \mid \mathrm{R}$ are solutions, or nearly all. The CAS-calculator doesn't check the domain of the equation.

Dynamization of the classical problem

a) Replace 4 with a ! Give an interpretation of the result!

The result is the Boolean expression $\mathrm{x}=6$ or $\mathrm{a}=4$ (means $\mathrm{x}=6$ or $\mathrm{a}=4$ and x arbitrary). Without first solving the classical problem, students can hardly understand it. The interpretation of such expressions helps to improve logical thinking.
b) In addition replace in a) furthermore 8 with b !

The result $\mathrm{x}=\frac{3 b(a-4)}{b+4(a-6)}$ seems to be incomplete and leads to a discussion of the reliability of the solver. Indeed for $\mathrm{a}=4$ the solution is 0 independent of b (compare with a)). This is a nice motivation to investigate the situation without technology.
CAS-calculators often give incomplete or even false solutions, especially with fractional equations.
c) Replace in the classical problem $\frac{3}{2}$ with 3!

Result: FALSE.
If you solve the equation by hand you get $x=4$. In this case the calculator considered the domain of definition of the equation.
d) Replace in c) 4 with a as in problem a)!

The result $\mathrm{x}=\frac{5 a+4 \pm \sqrt{25 a^{2}-248 a+592}}{6}$ is impressive and would be a hard piece of work without technology.
Further questions are possible: For what a will we have one, two or no solution(s)?
Result: $25 \mathrm{a}^{2}-248 \mathrm{a}+592=0 \Leftrightarrow a=\frac{148}{25}$ or $\mathrm{a}=4$. As we know from c) $\mathrm{a}=4$ isn't a solution.
Once more the solver arrives at an incomplete result.

Classical problem 2: Heron's formula

(From Richard G. Brown: Advanced Mathematics, page 6, exercise 32)
Find the area of the triangle with vertices $\mathrm{A}=(-13 / 2), \mathrm{B}=(5 / 17)$ and $\mathrm{C}=(22 /-4)$, using Heron's formula.

Solution:

Define Heron's formula for the area of a triangle as a function:
$\sqrt{s^{*}(s-a)^{*}(s-b)^{*}(s-c)} \left\lvert\, s=\frac{a+b+c}{2}->\operatorname{heron}(\mathrm{a}, \mathrm{b}, \mathrm{c})\right.$
Test the Formula with $a=3, b=4, c=5$!
Store the vertices: [-13,2]->a, [5,17\}->b, [22, -4]->c
heron(norm(b-a),norm(c-b), norm(a-c)) Result: 316.5
Note: The variables $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and even s are local variables. They are not overwritten by the definition of the vertices.
The above exercise doesn't require a CAS-calculator. You can also do it with a small program.

Dynamization of the classical problem

a) Is it possible to find a triangle with sides $\mathrm{x}, \mathrm{x}+1, \mathrm{x}+2$ (arithmetical sequence) and area 10 ? (Result: $x=4.018$ or -6.018)
b) What is the biggest (smallest) area, you can replace 10 in a), to get a value of x ? (Individual exploration!). Result: It works for all areas!
c) A heronic triangle is a triangle whose sides and areas are natural numbers. Find all heronic triangles whose sides are smaller than 20.
Solution: Write a program which calculates the possible triangles.
You can imagine a lot of other questions, e.g. about isosceles or equilateral triangles or triangles with a given ratio of its sides.

Classical problem 3: Vector equation

An aeroplane holds course east with an unknown effective velocity of e. The wind blows direction north-east with $\mathrm{w}=100$ miles $/ \mathrm{h}$. The aeroplane is flying with a velocity of $\mathrm{f}=500$ miles/h.
What's the maximal effective velocity of the plane and which course should the pilot hold (flight direction vector $\vec{f}=[\mathrm{x}, \mathrm{y}]$)?

Solution:

You can take either a geometrical or an algebraic approach as in the following solution:
$\frac{100}{\sqrt{2}}[1,1]+[x, y]=e[1,0]->$ e 1
$x^{2}+y^{2}=500^{2}->e 2$
solve(e1[1,1] and e1[1,2] and e2, $\{x, y, e\}$)

Result: $x=350 \sqrt{2}, y=-50 \sqrt{2}, e=400 \sqrt{2}=565.685$ (and the second "solution" in the opposite direction $x=-350 \sqrt{2}, y=-50 \sqrt{2}, e=-300 \sqrt{2}$)

Dynamization of the classical problem

a) The velocity of the wind and the plane will now be replaced with parameters w and f. As the wind force changes, the direction vector of the plane has to change too in order to hold a constant effective velocity. The formulas allow an automatic control of the flight.
Solution: Replace the two equations with

$$
\begin{array}{ll}
\frac{w}{\sqrt{2}}[1,1]+[\mathrm{x}, \mathrm{y}]=\mathrm{e}[1,0]->\mathrm{e} 1 & \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{f}^{2} \rightarrow \mathrm{e} 2 \\
\text { Result: } \quad \mathrm{x}=\frac{\sqrt{2\left(2 f^{2}-w^{2}\right)}}{2}, \mathrm{y}=\frac{-\sqrt{2} w}{2}, \mathrm{e}=\frac{\sqrt{2}\left(\sqrt{2 f^{2}-w^{2}}+w\right.}{2}
\end{array}
$$

You can ask questions like: Which is the minimal flight velocity, allowing the pilot to hold the eastern course.
b) A further generalisation is to replace the wind direction vector [1,1] with [a,b]. (If you want, you can also describe a, b with the wind direction angle.)
Solution: $\quad[a, b]+[x, y]=e[1,0] \rightarrow>e 1,(e 2$ stays unchanged $), a^{2}+b^{2}=w^{2} \rightarrow e 3$ Solve(e1[1,1] and e2[1,2] and e2 and e3, $\{x, y, e\}$)
Result: Students have to analyse the solutions and choose the most appropriate one, which should improve their abstract thinking ability. The solution is:

$$
\mathrm{x}=\frac{\sqrt{\left(a^{2}+b^{2}\right) f^{2}-b^{2} w^{2}}}{\sqrt{a^{2}+b^{2}}} \text { and } \mathrm{y}=\frac{-b w}{\sqrt{a^{2}+b^{2}}} \text { and } \mathrm{e}=\frac{\sqrt{\left(a^{2}+b^{2}\right) f^{2}-b^{2} w^{2}}+a w}{\sqrt{a^{2}+b^{2}}}
$$

Caution: The result depends on the mood of the calculator. It can also be given in the form:

$$
x=\sqrt{f^{2}-b^{2}} \text { and } \mathrm{y}=-\mathrm{b} \text { and } a^{2}+b^{2}=w^{2} \text { and } l=a+\sqrt{f^{2}-b^{2}}
$$

Students are now motivated to start a flight simulation project (at least in an ideal world).

Classical problem 4: Transversal

Given two skewed straight lines g and h. Insert a horizontal transversal of length 5! At which height do you have to place the transversal?

$$
\mathrm{g}:(\mathrm{x} / \mathrm{y} / \mathrm{z})=(-8 / 5 / 7)+\mathrm{t}(-6 / 3 / 4) \quad \mathrm{h}:(\mathrm{x} / \mathrm{y} / \mathrm{z})=(0 / 1 /-5)+\mathrm{s}(1 / 2 / 4)
$$

Solution:

Store the above vector equations of the lines in g and h !
The problem can be expressed by two conditions:
I. $|\overrightarrow{G H}|=5$
(CAS: norm $(\mathrm{g}-\mathrm{h})=5->\mathrm{e} 1$)
II. The $3^{\text {rd }}$ component of $G H$ is 0
(CAS: $(\mathrm{g}-\mathrm{h})[1,3]=0->\mathrm{e} 2)$

The solutions to the system of equations I and II are $(\mathrm{t} / \mathrm{s})=(-1 / 2)$ and $(-2 / 1)$.
The calculation with paper and pencil is rather hard work. However it requires only basic algebraic manipulations, which reduce the problem to a quadratic equation. With the calculator it can be done by pressing a few keys (solve(e1 and e2, $\{\mathrm{s}, \mathrm{t}\}$)). Next insert the t - or s-value in the $3^{\text {rd }}$ component of g or h.
(CAS: $\mathrm{g}[1,3] \mid \mathrm{t}=-1$ and $\mathrm{g}[1.3] \mid \mathrm{t}=-2$)

Dynamization of the classical problem

The above problem can be generalized using the same equations but replacing values with parameters, e.g.:
a) Replace the length 5 in condition I with a parameter c. What is the shortest horizontal connection between the straight lines g and h ?
Solution: $\mathrm{c}=\frac{5 \sqrt{2}}{2}$
b) Omit condition II in the classical problem! The transversal of length 5 glides on the two straight lines. What is the possible range of the variables t and s for a solution?
Solution: The extreme values are $t=\frac{5(-12 \pm \sqrt{21})}{41}$ and $s=\frac{48 \pm 5 \sqrt{61}}{41}$
c) Omit condition II again, but replace 5 with c (as in a)). Determine the endpoints and the length of the shortest distance between g and h ! Can you arrive at the solution in another way considering problem b)?
Solution: Shortest distance $\mathrm{c}=\frac{20 \cdot \sqrt{41}}{41}$ for $\mathrm{t}=-\frac{300}{205}=-\frac{60}{41}$ and $\mathrm{s}=\frac{240}{205}=\frac{48}{41}$
This is just the mean value of the extrem values of the solutions found in b). Now put s and t in the vector equations of g and h !
d) Replace in the classical problem one component of the first vector in g by a parameter c (e.g. c instead of 7). Determine the value of c, for which g and h intersect!

Solution: \quad solve $((\mathrm{g}-\mathrm{h})[1,1]=0$ and $(\mathrm{g}-\mathrm{h})[1,2]=0,\{\mathrm{~s}, \mathrm{t}\})$ Result: $\mathrm{s}=0$ and $\mathrm{t}=-4 / 3$
$(\mathrm{g}-\mathrm{h})[1,3]=0 \mid \mathrm{s}=0$ and $\mathrm{t}=-4 / 3$ gives $\mathrm{c}=1 / 3$
$\left.e^{*}\right)$ Project for interested students: In problem b) vary parameter t within the possible range. Describe the other endpoint of the gliding transversal using the same parameter (two possibilities). Visualize the gliding transversal geometrically (by programming or animation in a geometry program).

Classical problem 5: Apollonius sphere

Given the points $\mathrm{A}=(4 /-5 / 11), \mathrm{B}=\left(1 /-\frac{1}{2} / 2\right)$ and the line $l:(\mathrm{x} / \mathrm{y} / \mathrm{z})=(0 /-13 / 0)+\mathrm{t}(3 / 8 / 1)$.
Find the point P on the line l, so that $|\mathrm{AP}|:|\mathrm{BP}|=2: 1$!

Solution:

The problem can be expressed by two conditions:
I. $\frac{|A P|}{|B P|}=2$
II. $\mathrm{P} \in \mathrm{l}$

First store the points A and B in a and b and the line in l
Solve equation I: solve(norm($(1-\mathrm{a}) /$ norm $(1-\mathrm{b})=2, \mathrm{t})$. (result $\mathrm{t}=1$ or $\mathrm{t}=2$)
Substitute t with the values found: $l \mid \mathrm{t}=1$, respectively $l \mid \mathrm{t}=2$
Solutions: $\mathrm{P}_{1}=(3 /-5 / 1), \mathrm{P}_{2}=(6 / 3 / 2)$

Dynamization of the classical problem

The above problem can be generalized using the same equations but replacing values with parameters, e.g.:
a) Replace l with c in the direction vector of the line l.

For which parameters c will you find one, two or no solution(s)? Give a geometrical interpretation!
Result: \quad Solution of the equation $\mathrm{I}: \mathrm{t}_{1,2}=\frac{c-112 \pm \sqrt{-147 c^{2}-224 c+17}}{c^{2}+73}$
One solution: $\mathrm{c}=2.759$ or $\mathrm{c}=-4.290$
Two solutions: $-4.290<c<2.759$
No solution: c<-4.290 or c>2.759
b) Replace in the line l of a) the vector ($0 /-13 / 0$) with ($0 / 1 /-1$)!

Give a geometrical interpretation!
Result: $\quad \mathrm{t}_{1.2}=\frac{ \pm 7}{\sqrt{c^{2}+73}}$ (2 solutions, symmetrical to the point (0/1/-1))
Interpretation: ($0 / 1 /-1$) must be the center of the sphere.
c) Replace in the original classical problem the vector $(0 /-13 / 0)$ with $(0 / 30 / \mathrm{c})$.

Result: No solution! (The set of lines given by c never intersects the circle.)
d) Let us omit condition II in the original problem

Result: Equation of the Apollonius sphere $\mathrm{x}^{2}+(\mathrm{y}-1)^{2}+(\mathrm{z}+1)^{2}=49$ (compare with problem b)

You can also introduce parameters in A and B and make investigations on the harmonic points A, B and the point of intersection of the Apollonius sphere with l

Classical problem 6: Center of a circle

Find the center of a circle with peripheral points $\mathrm{A}=(-3 / 1), \mathrm{B}=(1 /-1), \mathrm{C}=(3 /-2)$.
Find also the radius r.
The first part of the problem can be expressed by the conditions
I. $|\mathrm{AM}|=|\mathrm{BM}| \quad$ II. $|\mathrm{BM}|=|\mathrm{CM}|$

With M given, the radius is $\mathrm{r}=|\mathrm{AM}|$.

Solution:

First store the center $\mathrm{M}=[\mathrm{x}, \mathrm{y}]$ and the points A, B and C in correspondent variables:
$[\mathrm{x}, \mathrm{y}]->\mathrm{m} \quad[-3,1]->\mathrm{a} \quad[1,-1]->\mathrm{b} \quad[3,-2]->\mathrm{c}$
Then define the system of equations I and II and solve it:
$\operatorname{norm}(\mathrm{m}-\mathrm{a})=\operatorname{norm}(\mathrm{m}-\mathrm{b})->$ e 1
$\operatorname{norm}(\mathrm{m}-\mathrm{a})=\operatorname{norm}(\mathrm{m}-\mathrm{c})->\mathrm{e} 2$
solve(e1 and e2, $\{x, y\}$)
The result for x is a very large number (6.10543E6) and the calculator gives the warning:
"More solutions may exist". The equations e1 and e2 have roots, which can be eliminated by squaring:
solve(e $1^{\wedge} 2$ and $\left.e 2^{\wedge} 2,\{x, y\}\right)$
Now we get the correct result "FALSE", which means that there is no intersection point. The points are on a straight line.

Replacing -2 with - 2.1 in C leads to the intersection point

$$
x=-\frac{1581}{40} \text { and } y=-\frac{1541}{20}
$$

Although this result is correct, the calculator gives the warning: "May introduce false solutions."

Dynamization

a) Replace -2 in C with a constant k and calculate the center of the circle again!

Result: $x=\frac{k^{2}-4 k+3}{4(k+2)}$ and $y=\frac{k^{2}+11}{2(k+2)}$
The case $\mathrm{k}=-2$ is not dealt with by the calculator.
Note: In this problem it would probably be better to start with $\mathrm{C}=(3 / \mathrm{k})$ and ask students to analyse special cases including geometrical interpretation.
b) Simplify equations e1 and e2 with

$$
\operatorname{left}\left(\mathrm{e} 1^{\wedge} 2\right)-\operatorname{right}\left(\mathrm{e} 2^{\wedge} 2\right)=0 \quad(\text { analogous with e} 2)
$$

and you get the linear equations of the perpendicular bisectors of $\overline{A B}$ and $\overline{A C}$.
c) Introduce a factor f in equation I): $|\mathrm{AM}|=\mathrm{f}|\mathrm{AC}|$. The equation I) represents an Apollonius circle as in the problem above.
Result in simplified form: $\left(1-f^{2}\right) x^{2}+\left(2 f^{2}+6\right) x+\left(1-f^{2}\right) y^{2}+\left(-2 f^{2}-2\right) y-2 f^{2}+10=0$
It is a rewarding exercise to transform this equation to the normal form (with or without technology):

$$
\left(x+\frac{f^{2}+3}{1-f^{2}}\right)^{2}+\left(y-\frac{f^{2}+1}{1-f^{2}}\right)=\frac{20 f^{2}}{\left(f^{2}-1\right)^{2}}=(\text { radius })^{2}
$$

You can ask questions like: What happens with the center and the radius, if f tends to 1 or 0 ! Describe a straight line as limit of a circle.

You can also generalize the classical problem three dimensionally: Given four points A, B, C and D . Calculate the center M and radius of the sphere through $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.

Final note:

This method of dynamization by parametrization works with about one third of all classical mathematical problems and gives us a quick way to produce problems for CAS calculators.

The method is also a way to progress from skill-oriented problems to thinking-oriented problems.

March 2001: René Hugelshofer
Address of the author: René Hugelshofer
Frauenäckerstrasse 18
CH-9435 Heerbrugg
Switzerland
E-Mail: rene.hugelshofer@ksh.edu

