Class: Calculus

Topic: Application of Maximum-Minimum Problems

Purpose: To find the minimum cost of installing a new power line from a power station to a point on an island.

Problem: A power line is to be constructed from a power station at point A to an island at point C, which is 1 mile directly out in the water from a point B on the shore. Point B is 4 miles down shore from the power station at point A. It costs $\$ 5000$ per mile to lay the power line under water and $\$ 3000$ per mile to lay the line under ground. At what point S down shore from A should the line come to the shore in order to minimize cost?

1. From the Home key (n) press [6] for a new document. If a screen pops up asking "Do you want to save 'Unsaved Document'? press to No and (23) or

If using a computer go to View and select Handheld Screen or TI-Nspire ${ }^{\mathrm{TM}}$ Handheld View.
Press (menu, 2 for View and 2 for Plane Geometry View.
2. For this problem we will use a scale drawing. If the scale is not on the screen press , ini 2 (2) to show the scale.

Begin by constructing a rectangle.
nemen, 8) Shapes, 3 Rectangle. Move 1 to top of and slightly to the left of center of
 as near horizontal as possible. Do not get to close to the scale. Press name the point. $\boldsymbol{\sim}$ until you get a rectangle the size you want-about half way. Press

3. Change the scale from cm to miles(mi)

Place the cursor X on the scale and (2) (3 flashing vertical bar should be located to
 See Figure 1.

Figure 1
4. Measure BC and AB and move measurements.

Press nemu $\sqrt{7}$ for length. Place 1 on side BC. If the rectangle flashes press (tob) to find the length of side BC. Press fine fiin. Move \uparrow to side AB and repeat the process. See Figure 2.
Press (ess).
Move measurements below the rectangle and to the right side. Place the cursor on the measurement for AB until the measurement flashes and the word text appears. See Figure 3. Press (ot+1) (3). Hand will close. Use arrows to move the measurement. Press (esc). Repeat the process for side BC. Drag the measurement below the value for $A B$ and press (esc).
5. Scale the drawing. Note: We have already changed the scale from cm to mi .
a. Copy the horizontal measurement. Move the cursor to the horizontal measurement until the hand appears and (2) (2). Move the flashing vertical bar behind the number. Press and hold , 管 while pressing $\&$ to highlight the number. Press © ctric (c) fiel to copy the number.
b. Move \uparrow over the scale (1 mi) until Υ appears and (2) (2). Move the flashing vertical bar behind the number. Press $\xrightarrow{1}$ is deleted. Press [4] (the distance from A to B in the problem.) (i) © (v) Sinc . See Figure 4. Note: The horizontal distance has changed to 4 miles.
c. The vertical distance has also changed but not to 1 mile which is the distance in the problem.
See Figure 5. Move the cursor \uparrow over the vertical measurement and (3) (2). Move the flashing vertical bar behind the number. Press nem until the number is removed and press
 Note: This will change the size of the rectangle. See Figure 6 on the next page.

Figure 2

Figure 3

Figure 4

Figure 5
6. Construct segments BC and AB .
nemu (6) 55 Place the cursor \uparrow on point B and press Sins. Move cursor \uparrow to point C and press Enim. Repeat the process to get segment AB. Place the cursor \uparrow on B. S.ifiel Move the cursor

7. Hide the rectangle and the vertex not named.

Place the cursor ${ }^{\wedge}$ on the rectangle until it flashes. If the segment flashes press (ab). See Figure 7. Press (ment $[1$ Actions 3 for Hide/Show and 酮). Move the cursor \uparrow to the unnamed vertex. Press Figure 8.

Figure 6

Figure 7

Figure 8

Figure 9
10. Measure segments BS and SA.

Press nemur 10 for length. Place 1 on segment BS and press 气ind firich. Move to segment SA and repeat the process. Press (esc).

Move measurements below the rectangle and to the right side.
Place the cursor on the measurement for BS until the measurement flashes and the word text appears. Press © ctr (2). Hand will close. Use arrows to move the measurement.
Press (esc). Repeat the process for segment SA. Drag the measurement above the value for BS and press ess. See Figure 10.
11. Label the lengths BS, SA, and BC as such.

Place \uparrow on the measurement for BS and (2 . Press (1). Hold down (axit while pressing (B) (S) Eitirl. Repeat the process for SA and BC. See Figure 11. With BC flashing press ottr (2) and move the value to the left of segment BC.
12. Use "text" to label CS and SA with $\mathrm{d}=\mathrm{CS}$ and $x=S A$.

Place near segment CS and press mem (1) 6 , finit () Sixis. Move the d if necessary. Repeat the procedure for x and esc. See Figure 12.
13. Write a formula for CS, calculate its current value, and assign a variable to the value.
a. Place \uparrow below and to the left side of the
 $C S=\sqrt{C B^{2}+B S^{2}}$, escisict
b. To calculate the current value place \uparrow on CS
 Sinim (esc). Move the value below the formula for CS and (esc).
c. To assign a variable to CS place \uparrow on the
 and (esc). See Figure 13.

Figure 10

Figure 11

Figure 12

Figure 13
14. Determine a cost equation and assign a variable to the calculated value.
total cost $=5000 \mathrm{~d}+3000 \mathrm{x}$
Place \uparrow below the value for d and press (ment $\langle 1$ (6) Einie and type
 Einict (esc).

To calculate the total cost using the current values press (ment $\langle 1\rangle\langle 8\rangle$. Move \uparrow to the cost equation until it flashes. Press Siner . Move to the value for d and value flashes. See Figure 14.
 you to select a value for x. Move \uparrow to the value for SA (Rem: $x=S A$). Press Sium. Move the off SA and a number will follow you. This is the cost for the given values of d and x. Move the value under the cost equation and press enier esc.

To assign a variable to the cost value place on the value until the hand appears and the number flashes. Press (:3) , 1) and type (T) and press 气领 (esc). See Figure 15.
15. Open a Lists and Spreadsheet page. (() 3 (
Δ to A. Type (L)(A)(A)(D) and (ab) to B and type (1)(A)TER . (bab to C and type (T)(O)(A)(L)(C)(S) 1 and fint. 4 to formula line under A and press (nent (3) 2) 2) (to manually collect data later) and type (s)(A) and Siner . Press $\rightarrow \Delta$ under B and press (ment (3) 2) 2) and type (D). Press - for the pull down menu and select Variable Reference and Sixire. Press $\boldsymbol{\Delta}$ under C
 See Figure 16.
16. We are now ready to collect data for spreadsheet.
Press ©trr stor return to the Graphs and
Geometry page. Grab point S ($\mathrm{ct+1}$ (2) $)$ and move it to the right until SA $=0$. See Figure 17.

Figure 14

Figure 15

Figure 16

Figure 17

Press ctrl to set the first point in the spreadsheet. Press © . See Figure 18. Note: The value for d is 4.12311 or $\sqrt{17}$ As it should be if we traveled by water only.
17. Press © tort 4 to return to the previous page. Place the cursor \uparrow on Point S. Press (atr) (2) to get a closed hand. Move the closed hand to the left a few clicks (I use 5.) and press (ctr) Continue this process until Point S lies on top of Point B. Press © ont last time and (esc). See Figure 19.
18. Press to look at the spreadsheet.

Note: The last value in the spreadsheet should be $\mathrm{sa}=4, \mathrm{~d}=1$, and tc = 17000 (See Figure 20.) which represents the distance traveled along the legs of the triangle.

Note: © (atrl will allow you to move to any row in the spreadsheet. Press (ctr) (c) © (See Figure 21.) and Exiine to move to Row 1 in the spreadsheet.

Figure 18

Figure 19

Figure 20

Figure 21
19. Add a Graphs and Geometry page.

Press (n) 2 .
Set the graph type to Scatter Plot.
Press (nemu (3) 4) Enime. Use the $\boldsymbol{\nabla}$ to select "water" as the independent variable and Enime. Press (tab) 跠 and to select "totalcost" as the
 Press © (ctr) to hide the entry line.

Figure 22
20. Set the window so we can view the data.

Press (nemi \{2] [8) to show axes end values. Place the cursor 4 on the y-min and press (3) (2). Press (nis) (tab which carries you to the y-max. Type $20200<0$ and (tab) to x-max. Type ${ }^{6}$ and (tb) to y-min and type (1) $0<0<0<0$ and (tab) and (esc) (esc).

See Figure 23.

21. Before proceeding copy page 1.3 to 2.1.

Press (t)Tr (4) to insert a new problem. Press $\sqrt[2]{2}$ to open a Graph page. To copy press © ctr to go to the Page Sorter. See Figure 24. With the border around page 1.3 press © (C). Press $\downarrow \vee$ so the border is around page 2.1. Press © (v) to paste page into problem 2. Place border around 2.1 and press $\stackrel{\text { comer }}{ }$. Follow this procedure to copy 1.3 to 3.1.
22. Find a quadratic function that best fits this data.

To change the Graph Type from Scatter Plot to Function press (ment (3) 1). Press atm 4 to return to the Lists and Spreadsheet page.

Place your A in column D. Press nemy (4) (1) (6) to get a Quadratic Regression. See Figure 25. Press $\boldsymbol{\sim}$ to "water" and Enimer Press
 your Regression Model. See Figure 26 on the next page. Press ot+r to return to graph.

Figure 23

Figure 24

Figure 25

Figure 26
Press Δ and model. See Figure 27.
23. Since I cannot trace on a Regression Model type
 into problem 2.1 as $\mathrm{f} 1(\mathrm{x})$ and (ment [5] [1) to trace and approximate the minimum value. See Figure 28. This is an unreasonable answer since it is 1 mile to shore. Therefore we will grab our graph near the vertex and move the parabola until the vertex is near the lowest point of the stat graph. Also grab the parabola near the top of the screen and work for a better fit. Find the minimum point now.
See Figure 29.
Note: The x value of the ordered pair represents the distance traveled by water. When solved, the value for x is 3.43 which is over by 0.18 mi while the minimum value is under by $\$ 0.80$.
24. Write an equation for total cost in terms of x to find the actual minimum value.

The equation is $t c=5000 \sqrt{1+(4-x)^{2}}+3000 x$. Insert a new problem (Problem 3).
On page 3.1 press (meny 2) to get a Graphs and Geometry Page. Use the same window as in Step 20 and type the equation into f1(x) and Sine . Find the minimum value of this function by pressing (ment <5 (1) and trace until the minimum appears. See Figure 30.

Figure 27

Figure 28

Figure 29

Figure 30

