## Paper Folding

## Student Activity

$$
\begin{array}{llllll}
7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$



## Introduction

An A4 piece of paper measures $29.7 \mathrm{~cm} \times 21.0 \mathrm{~cm}$. The page is oriented in 'landscape' format. The top left corner of the page is folded such that the corner just touches the base of the page. A triangle is formed in the bottom left corner. The height of the triangle is denoted by $x$ and the base $b$.

The aim of this investigation is to determine the maximum area that can be formed with this triangle.

## Forming an Equation



Question: 1.
Determine an expression for the hypotenuse of the triangle in terms of $x$.

## Question: 2.

Determine an expression for the base of the triangle in terms of $x$ and state any domain restrictions.
Question: 3.
Define a function $a(x)$ for the area of the triangle in terms of $x$.

## Validating the Equation

Open the TI-Nspire file "Paper Folding".
Navigate to page 1.2
Grab point $P$ and move it up and down. As point $P$ moves up and down the height and area of the triangle is being collected automatically.
Navigate to page 1.3 and graph the function $a(x)$ and confirm that it passes through the data points generated.


## Question: 4.

Determine the derivative of the function: $a(x)$.

## Question: 5.

Determine the value for $x$ for which the area is a maximum.

## Question: 6.

Determine the maximum area of the triangle.

## Question: 7.

Suppose the 'height' of the paper is changed from 21 cm to $h \mathrm{~cm}$. Determine the value of $x$ for which the area of the triangle is a maximum and the corresponding area.

Texas Instruments 2017. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements

