Chapter 3

Comparing Distributions of Univariate Data

Topic 9 covers comparing data and constructing multiple univariate plots.

Topic 9—Multiple Univariate Plots

Example: Building heights in Philadelphia, PA were stored in list phily and folder BLDTALL in Topic 1. Store Seattle building heights (buildings 400 or more feet tall) in list seattle, and New York City building heights (the 24 tallest buildings) in list nyc.

Store the following data, in the order listed, in lists seattle and nyc in folder BLDTALL.

seattle	500	605	609	487	466	514	454	456	543	409	574	943
	493	730	580	743	722	448						
nyc	792	927	1046	1250	741	951	850	813	808	730	750	750
	1368	1362	915	716	752	739	778	814	745	757	866	861

(Source: Reprinted with permission from the World Almanac and Book of Facts 2000. © 2000 World Almanac Education Group, Inc. All rights reserved.)

1. Press APPS, 1:Flash Apps, and then select the Stats/List Editor.
2. Create the list seattle by highlighting the list1 heading. Press [2nd [INS] and type the name seattle.
3. Repeat step 2 to insert the name nyc in place of list2.
4. Enter the seattle and nyc data values from the table on page 49 under the appropriate headings (screen 1).

Parallel Boxplots

Parallel boxplots are the quickest way to get a pictorial overview of the comparison between data lists on the TI-89.

1. From the Stats/List Editor and folder BLDTALL, press [F2) Plots, and select 1:Plot Setup.
2. Highlight Plot 1, and press F1 Define to define Plot 1 as a modified boxplot with X List: nyc (screen 2).
3. Press ENTER twice to return to the Plot Setup screen.
4. Repeat steps 2 and 3 for Plot 2 defined for list seattle and Plot 3 defined for list phily (screen 3).
5. From the Plot Setup screen, press F5 ZoomData. After the plots are displayed, press F63 Trace and (1) four times (screen 4).
(1)

Fig Fit				
Phil ${ }^{\text {l }}$	E日ヨt.t...			1ist1
585	510	792		
465	615	927		
46	669	1046		
475	487	1250		
450	466	741		
412	514	951		
listi[1]=				
ELLTATALL	Finc illa		FUWE	$4{ }^{\prime}$

All the distributions are skewed to the right with at least one outlier. New York City (P1) has three outliers of 1250, 1362, and maxX = 1368 feet (the Empire State Building, One World Trade Center, and Two World Trade Center, respectively). The most obvious difference is with New York City having taller buildings (center shifted to the right). Seventy-five percent of NYC's 24 tallest buildings are over 750 feet $=Q_{1}$, while Seattle has only one building that tall (the outlier), and Philadelphia has three buildings that tall (including the two outliers). Philadelphia buildings (minus the outliers) have the greatest overall spread, but NYC's interquartile range (spread of center 50% of the box) is the largest and its center box also has the most skewness. Seattle's middle 50% is almost symmetric (median line almost in the center of the box).

1-VarStats for Multiple Lists

1. From the Home screen, press CATALOG, and then press F3 Flash Apps.
2. You are in alpha mode so you do not press the alpha key. Press the letter 0 (screen 5). Note the syntax at the bottom of the screen when - is next to OneVar(. NUM is the number of lists designated as $\mathbf{x 1}, \mathbf{x 2}, \ldots, \mathbf{x} 20$.
3. Press ENTER and tistat.onevar(is pasted in the input line of the Home screen.
4. Type and/or paste 3, phily, seattle, nyc) and then press ENTER to complete the operation (screen 6). (Done is displayed.)
5. Press 2nd [VAR-LINK], scroll down to highlight the STATVARS folder, and press (1) to expand the folder and highlight mat1var.
6. Press ENTER to paste mat1var to the Home screen input line.
7. Press ENTER (screen 7).
8. To view the entire matrix of values, press Θ once to highlight the matrix. Press © (1) or (1) to go right or left, and $\uparrow \ominus$ or $\uparrow \Theta$ to go up or down. (The \uparrow key is to the right of $2 n d$.)

Note: Lists do not need to be of equal length.
(5)

(7)

" $\Sigma \times$ "	12941.	10
" 2×20	7.52311 E 6	6.p
" $5 \times$ "	153.964	13
" $\sigma \times$ "	150.722	13
statuars ${ }^{\text {a }}$ mat1var		
ELLTALL	TO FUNC	

Below is a table summary of seven key variables for each of the three cities. As a reminder:
$\bar{x}=$ mean
$\sigma_{x}=$ standard deviation
$n=$ sample size
Med = median
$\mathrm{Q}_{3}=$ third quartile (75% value)
$\mathrm{Q}_{1}=$ first quartile (25% value)
$\mathrm{IQR}=$ interquartile range

	phily	seattle	nyc
$\overline{\boldsymbol{x}}$	539	571	878
$\sigma_{\boldsymbol{X}}$	151	133	188
\boldsymbol{n}	24	18	24
Med	489	529	811
$\mathbf{Q}_{\mathbf{3}}$	579	609	921
$\mathbf{Q}_{\mathbf{1}}$	426	466	750
IQR	153	143	171

Summary measures without outliers:

	phily	seattle	nyc
$\bar{x}_{\mathbf{0}}$	507	549	814
$\sigma_{\mathbf{0}}$	109	101	85
$\boldsymbol{n}_{\mathbf{0}}$	22	17	21
$\mathbf{M e d}_{\mathbf{0}}$	485	514	792
$\mathbf{I Q R}_{\mathbf{0}}$	155	146	116

The summary measures in the first table confirm what you observed from the modified boxplots, but the values calculated without the outliers emphasize the extreme nature of the New York outliers to the extent that the measure of variability for New York has changed from the most variable to the least (compare σ_{x} and $I Q R_{\mathrm{x}}$ with σ_{0} and $I Q R_{0}$). Screen 8 shows what the boxplot looks like if you delete the outlier values from the data set and regraph. Compare screen 8 with screen 4 . With the reduced data set, the Chrysler Building in New York City (1046 feet) becomes a possible outlier.

Multiple Dotplots

The TI-89 has no built-in dotplot function. In Topic 2 you did the plot by hand because dotplots and stemplots are most effective for small to moderate size data lists (histograms work best for longer lists). It will be helpful, however, to build multiple dotplots on the TI-89 using the following method to aid in making comparisons.

1. Copy lists phily, seattle, and nyc to lists list1, list2, and list3 respectively, and sort them in ascending order (screen 9). (See Chapter 1, Topic 2, Putting Data in Order section.) The Stats/List Editor should resemble screen 9.
2. Replace list4, list5, and list6 with new names t1, t2, and t3 respectively. (See the Do This First chapter, Inserting a New List Name section.)
3. Fill list t1, t2, and t3 with 1's, 2's, and 3's respectively, using commands seq(1,x,1,24), seq(2,x,1,18), and seq(3,x,1,24). (See the Do This First chapter, Using seq(to Generate a List section.)
4. The screen should resemble screen 10 .
5. Change the second 1 in list $\mathbf{t 1}$ to 1.1. (This corresponds to the repeated value of 400 in list $\mathbf{x 1}$.)
6. Press 2 nd \odot to continue down list $\mathbf{t 2}$ to make the $8^{\text {th }}$ and $18^{\text {th }} \mathbf{t 1}$ values have values of 1.1 .
7. List seattle has no repeats, but in list3 (nyc) there are two 750's in positions 6 and 7 , so make the $7^{\text {th }}$ value in t3 equal 3.1.

(10)

8. Using F2 Plot, select 1:Plot Setup and F1 Define to create three plots with the specifications shown in the table and in screen 11.
(11)

Plot 1	Type: Scatter	Mark: Dot	X List: list1	Y List: t1
Plot 2	Type: Scatter	Mark: Dot	X List: list2	Y List: t2
Plot 3	Type: Scatter	Mark: Dot	X List: list3	Y List: t3

9. Set up the window using \square [wINDOW] with the following entries:

- $\quad \mathbf{x m i n}=350$
- $\quad \mathrm{xmax}=1400$
- $\mathbf{x s c l}=100$
- $y m i n=-1$
- $y m a x=7$
- $\mathrm{yscl}=0$
- \quad xres $=1$
(See screen 12.)

10. Press [GRAPH] (screen 13).
11. If the graph is difficult to see, go back to the Plot Setup screen (step 8) and change the mark in Plot 1, Plot 2, and Plot 3 to + (plus) (screen 14).

You looked at the dotplot for Philadelphia buildings in Topic 2, but the additional information gathered from the multiple dotplots over the parallel boxplots is a cluster of three buildings in Seattle around 700 feet, with a gap of over 100 feet from the smaller buildings. New York City has a fourth possible outlier at 1046 feet (the Chrysler Building).
(13)

ELDTALL	RÁD AUTQ

Back-to-Back Stemplots

Use the sorted values in list1, list2, and list3 to create the following stemplots as you did in Topic 2.

The previous stemplots show all the data to the nearest ten feet. All cities lists are skewed to taller values, with New York City having the majority of the taller buildings and Philadelphia the majority of the smaller buildings. The variability, clusters, gaps, and outliers are consistent with what you observed in the dotplots and modified boxplots.

Multiple (Sparse) Histograms

To combine the advantages of both the histograms and dotplots, you will compare histograms with many cells. Too many cells and a Plot Setup error will occur. Bucket widths of 25 feet will work. Using this width, the maximum frequency in any cell is $\mathbf{6}$ for the phily data, $\mathbf{4}$ for the nyc data, and $\mathbf{3}$ for the seattle data.
$6+1=7,7 * 3=21$, so $|y m i n|+|y m a x|=21$ and you can fit three histograms on one graph screen.

1. From the Stats/List Editor, press F2 Plots, 1:Plot Setup and F1 Define to create the following three plots with specifications:

Plot 1	Type: Histogram	X: nyc	Bucket width: 25
Plot 2	Type: Histogram	X: seattle	Bucket width: 25
Plot 3	Type: Histogram	X: phily	Bucket width: 25

(See screen 15.)

2. Highlight Plot 2 and Plot 3 and press F4 $(\sqrt{ })$ to deselect the plots. Observe in screen 15 that Plot 1 is the only one checked and active.
3. Set up the window using \square [wiNDOW] with the following entries:

- $\quad \mathbf{x m i n}=350$
- $x \max =1400$
- $\mathbf{x s c l}=\mathbf{1 0 0}$
- $y \min =-14$
- $y m a x=7$
- $\mathrm{yscl}=0$
- \quad xres $=1$
(See screen 16. The histogram is the top third of the graph screen.)
(15)

(16)

4. Press [GRAPH] (screen 17).
(17)

5. Press F1 Tools and select 2:Save Copy As (screen 18).
6. Select Type: Picture and Folder: BLDTALL. In the Variable: field, type histo. Press ENTER ENTER.
7. Return to the Plot Setup screen and deselect Plot 1. Highlight Plot 1 and press F4 $(\sqrt{ })$ to deselect it.
8. Select Plot 2 (F4 ($\sqrt{ }$)) with seattle data and change the window $(\checkmark$ [WINDOW]) to the following entries:

- \quad xmin $=\mathbf{3 5 0}$
- $\quad \operatorname{xmax}=1400$
- $\mathbf{x s c l}=\mathbf{1 0 0}$
- $\quad \mathrm{ymin}=-7$
- $y m a x=14$
- $\mathrm{yscl}=0$
- \quad xres $=1$
(See screen 19.)

9. Press [GRAPH] for the middle histogram (screen 20).
10. Press F1 Tools, select 1:Open picture histo, and then select Type: Picture.
11. Press ENTER and the top two graphs are displayed (screen 21).
12. Repeat steps 5 and 6 corresponding to screen 18 to save these graphs in place of the old histogram.
(21)

13. From the Plot Setup menu, deselect Plot 2, select Plot 3 with phily data, and change the window (\square [WINDOW]) to the following entries:

- $\quad \mathbf{x m i n}=\mathbf{3 5 0}$
- $\quad \mathrm{xmax}=1400$
- $\mathbf{x s c l}=100$
- $y m i n=0$
- $y m a x=21$
- $y s c l=0$
- xres $=1$
(See screen 22.)

14. Press [GRAPH] for the bottom histogram.
15. Press F1 Tools, select 1:Open picture histo, and then select Type: Picture.
16. Press ENTER to view all three histograms (screen 23).

Skewness, clusters, gaps, and outliers are all shown in relationship to the other data sets.

Parallel Boxplots with Multiple Dotplots

Screen 24 gives two type comparisons on the same screen. Can you duplicate it?

(24)

