MATRICES USING CAS

Addition and subtraction of matrices

CAS is an easy and effective way of calculating matrices.

Complete Ex 18(a) Evaluate the matrix additions 'by hand'.

Check you solutions using the CAS.

Multiplication of Matrices

Note the pattern with matrix multiplication.

Investigate with other types of matrices.

The order of the resultant matrix is a 2 by 1.

(number of rows X number of columns)

What happens if you reverse the order of the multiplication?

Hence matrix multiplication is NOT commutative.

Hence if A (m x n) matrix and B (n x p) matrix then the resultant matrix is AB (m x p) matrix.

BUT

BA is not conformable for multiplication...

Complete exercises in Ex 18(b) using CAS.

Solving simultaneous equations using matrices and CAS

$$2x - 1 y = 4$$

 $1x + 2y = -3$

This can be represented by matrix multiplication.

$$\begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$$

Using matrix multiplication and CAS is an easy way for solving for x and y.

The equations must be set up in the following forms.

$$2x - 1 y = 4$$

 $1x + 2y = -3$

Using the **simult**(function which can be found in **CATOLOG**

Use the SOLVE (can be found under F2) is a very easy way of solving 2 simultaneous equations in 2 unknowns.

$$2x - 1 y = 4$$

 $1x + 2y = -3$

Use the SOLVE in CAS to find the point of intersection.

Using the **simult**(function solve the simultaneous equations in Ex 18(c)

Exercises:

1. Express each of the following pairs of simultaneous equations as a single matrix equation and SOLVE these equations simultaneously.

(i)
$$3x+4y=24$$
 (ii) $7x-3y=27$ $6x=5y$ $x-6y=18$ $-2x+5y=-31$ $x+y=1$

Check your solutions by using the SOLVE function on your CAS.

2. Write each of the following matrix equations as a pair of simultaneous equations and **solve** them using "by hand" skills.

(i)
$$\begin{bmatrix} 3 & 2 \\ 2 & 5 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 20 \\ 12 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} -7 & -1 \\ 6 & -4 \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 10 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} 2.4 & -0.2 \\ \frac{1}{2} & \frac{2}{3} \end{bmatrix} \times \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1.4 \end{bmatrix}$$

3. **Verify** each of the solutions in 2 above by using matrix multiplication, and **check** this by drawing the graph of the two linear relations on the same set of axes and identifying the point of intersection (using CAS).