

Sample Activity: Exploration 2

Brendan Kelly

Annual income twenty pounds, annual expenditure nineteen nineteen six, result happiness. Annual income twenty pounds, annual expenditure twenty pounds ought and six, result misery.
— Charles Dickens 1851

Broom Hilda has discovered too late the power of compound interest. One dollar invested at an annual interest rate of 3% grows according to the table shown on the right, that is,

After one year, the dollar has accumulated 3^{ϕ} interest, so the investment has grown to a value of $\$ 1.03$.

In the second year, the entire $\$ 1.03$ earns interest (not just the original \$1.00 invested) and so the investment has grown to \$1.03 plus the interest on $\$ 1.03$. So the total value is $\$ 1.03+(.03)(\$ 1.03)$. Applying the distributive law, we express this as $\$(1.03)^{2}$. \square

Each year the investment grows to 1.03 times its value at the end of the previous year, so the value at the end of three years is $\$(1.03)^{3}$.

In general, the value at the end of the $n^{\text {th }}$ year is $\$(1.03)^{n}$, so the value at the end of the $1500^{\text {th }}$ year is $\$(1.03)^{1500}$. \qquad $(1.03)^{1500}$

WORKED EXAMPLES

WORKED EXAMPLE

a) Create a table showing the value of Broom Hilda's $\$ 10$ investment at the end of the $n^{\text {th }}$ year for $n=1$ to 100 , if the investment accumulated interest at 3% per year. Use your table to determine how many years it took for the investment to double.
b) Graph the value of the investment during the first 100 years. Trace along the curve to determine how many years it took for the investment to grow to 5 times its original value. What would be the value of the investment after 1500 years?

SOLUTION

a) The value of the investment at the end of the $n^{\text {th }}$ year is $10(1.03)^{n}$. We must make a table of the function $\mathrm{u} 1(n)=10(1.03)^{n}$, for positive integral values of n. To do this, we must first select SEQuence mode by pressing MODE . Then adjust the MODE settings so they match the display at the top of page 9 .

To set the initial value of n (i.e. $n=1$) and the incrementing value for n (i.e., $\Delta \mathrm{tbl}=1$), press: \square [TbISet]. Then use your cursor keys to move through the fields in the TABLE SETUP and enter the values as in the display shown here.

To define $\mathrm{u} 1=10(1.03)^{n}$, we press these keys: \square
$[\mathrm{Y}=]$.
We then enter:

To generate the table we enter \square [TABLE]. At first, the table displays the values of $\mathrm{u} 1(\mathrm{n})$ for $n=1$ to 5 . We use the cursor key to move down through the values of n until the u1(n) column entry exceeds $\$ 20$, (i.e., the $\$ 10$ investment is doubled). We obtain the display shown on the right. The value 20.328 opposite $n=24$ indicates that the investment doubled to $\$ 20.33$ in about 24 years.
b) To graph the value of the investment over its first 100 years, we press \longrightarrow [WINDOW] and set the window variables to the values shown in the display.
Then we press: \longrightarrow [GRAPH].
To trace along the graph, we press:

F3 $>$ and we continue

 to press the cursor key until the cursor reaches a point with y-coordinate (i.e., yc) greater than 50 . The display shows that this occurs when $n=55$. That is, the investment of $\$ 10$ grows to 5 times its original size in about 55 years.The accumulated value of \$10@3\% per annum over 1500 years is $10(1.03)^{1500}$ or about $\$ 180000000000000000000$. This is more than all the money in the world today!
Smoking is very expensive.

EXERCISES \& INVESTIGATIONS

1. Graph $\mathrm{u} 1(\mathrm{n})$ for $1 \leq \mathrm{n} \leq 10$ where $\mathrm{u} 1(\mathrm{n})$ is given by:
a) $3 n$
b) $5 n-20$
c) $\mathrm{n}^{2} \div 3$
d) $\sqrt{80 n}$
(2. a) Explain why an investment of $\$ 1$ compounded at a rate of $i \%$ per annum for n years yields $\left(1+\frac{i}{100}\right)^{n}$ dollars. b) Write an expression for the value of $\$ P$ after n years of compounding at a rate of $i \%$ per annum.
(3. a) Access the command fPart (by pressing CATALOG and scrolling. Create a table of values for $\mathrm{u} 1(\mathrm{n})=\mathbf{f P a r t}(\mathrm{n} / /)$ for $n=1$ to 28 . Explain any pattern you see.
b) What does the command fPart(do?
c) Graph $\mathrm{u} 1(\mathrm{n})$ for $\mathrm{n}=1$ to 28 . What pattern do you see?
d) Use your pattern to predict the value of u1(40).
2. a) Create a table of values for 7^{n} for $n=1$ to 8 .
b) Graph 7^{n} for $n=1$ to 8 . Trace along your graph to find the value of 7^{6}.
3. a) An investment of $\$ 10000$ which earns simple interest at the rate of 8% per annum earns $\$ 800$ interest every year. Create a table which shows the value $u 1$ (n) of the investment at the end of the $\mathrm{n}^{\text {th }}$ year for $\mathrm{n}=1$ to 20 .
b) To the table you created in part a) add another column showing the value $u 2(n)$ of the investment at the end of the $\mathrm{n}^{\text {th }}$ year for $\mathrm{n}=1$ to 20 when interest is compounded annually.
c) How much greater is the value of the investment at the end of 20 years when the interest is compounded?
d) Graph $u 1(n)$ and $u 2(n)$ for $n=1$ to 20. Trace along the graph to find the values of $u 1(n)$ and $u 2(n)$ when $n=10$. Compare the graphs of $u 1(n)$ and $u 2(n)$ as n increases.
4. Set the window variables to: $0 \leq x \leq 10 ; 0 \leq y \leq 70$. Graph $\mathrm{u} 1(\mathrm{n})$ where $\mathrm{u} 1(\mathrm{n})$ is given by:
a) $\mathrm{u} 1(\mathrm{n})=\mathrm{u} 1(\mathrm{n}-1)+5 \leftarrow$ This means that the $\mathrm{n}^{\text {th }}$ term is $u(1)=1 \quad 5$ more than the $(n-1)^{\text {th }}$ term.

$$
\begin{array}{ll}
\text { b) } \mathrm{u} 1(\mathrm{n})=2 \mathrm{u} 1(\mathrm{n}-1) & \leftarrow \text { This means that the } \mathrm{n}^{\text {th }} \text { term } \\
\mathrm{u}(1)=2 & \text { is double the }(\mathrm{n}-1)^{\text {th }} \text { term. }
\end{array}
$$

Trace along each graph to find the value of u1(6) in each case.
c) Graph $u 1(n)$ where $u 1(n)=\frac{1}{u 1(n-1)}+1$ and $u 1(1)=1$,

Graph in the range $0 \leq x \leq 20 ; 0 \leq y \leq 2$, for $\mathrm{n}=1$ to 20 .
Trace along the graph to evaluate $\mathbf{u 1 (2 0)}$. Compare your value of $u 1(20)$ with the value of $\frac{1+\sqrt{5}}{2}$. Describe what you discover.
d) Graph $u 2(n)$ where $u 2(n)=u 2(n-1)+u 2(n-2)$ and $u 2(-1)=1$ and $u 2(0)=1$.
Enter ui2 $=\{1,1\}$ to indicate the two initial values. Trace along the

To graph $u 2(n)$ and not $u 1(n)$, highlight u1(n) and press key F4 to de-select u1(n).
graph to find the value of $\mathbf{u 2}(10)$. Explain how you can calculate any term of this sequence if you know the two previous terms. Do you know the name of this famous sequence?
e) Graph $u 3(n)$ where $u 3(n)=\frac{u 2(n-1)}{u 2(n-2)}$ and $u i 3=\{1,1\}$. Graph in the range $0 \leq x \leq 20 ; 0 \leq y \leq 2$, for $\mathrm{n}=1$ to 20 .
Trace along your graph to evaluate u3(10). Compare with your answer in part c). Explain what you discover.

Solutions to the Selected Exercises

Exploration 2

1. We set the window variables as shown in the left display, and define $\mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3$ and u 4 as shown in the display on the right.

When we select each of u1 through $u 4$ in turn (by pressing F4) and graph them, we obtain these graphs.

2 a) The value of an investment of $\$ 1$ growing at a rate of $\%$ per annum increases by a factor of $\left(1+\frac{i}{100}\right)$ each year. Therefore to find its value aftem years, we multiply it by $\left(1+\frac{i}{100}\right)$ n times.
b) $\$ \mathrm{P}\left(1+\frac{i}{100}\right)^{n}$
3. a) We define $\mathrm{u} 1(\mathrm{n})=\operatorname{fPart}(0.142857 * \mathrm{n})$ and obtain this tabl

As we scroll down the table, we
 discover that the numbers run throus a periodic cycle; i.e. they repeat ever seven numbers.
b) $\operatorname{fPart}(x)$ returns the fractional par of the number x.
c) The periodic pattern described i part a) is evident in the graph below d) $u 1(40)=u 1(33)=\ldots=u 1(5)$. Fro the graph, we see $u 1(5)=0.71428$

5. $a \& b)$ The value of the investment after n years of simple intere
is $\mathrm{u} 1(\mathrm{n})=10000+800 \mathrm{n}$. The value of the investment after n years of compound interest is given by $\mathrm{u} 2(\mathrm{n})=$ $10000(1.08)$. The values of $\mathrm{u} 1(20)$ and $\mathrm{u} 2(20)$ are shown in the bottom row of the table.

c) We see that 8% simple interest yields $\$ 26,000$ after 20 years, while 8% compounded interest yields $\$ 46,610$ showing a difference of about $\$ 20,610$! That's why the only person who is likely to give you a simple interest loan is a close relative.
d) When we set the window variables as shown here, and then graph $u 1(n)$ and u2(n), we obtain the graph shown in the display below. When we move the cursor along the lower curve to xc: 10 , we see that the value of the investment under simple interest is $\$ 18,000$ after 10 years. Moving the cursor upward onto the upper curve
 reveals that the value under compounding is $\$ 21,589.25$ after 10 years. We observe that the gap increases as n increases.

6. a) $u 1(6)=26$
b) $u 1(6)=64$
c) From the table or grap $u 1(20)=1.618033998 \ldots$...The golden ratio
≈ 1.6180339
d) $\mathrm{u} 2(\mathrm{n})$ is the famous Fibonacci sequence, $1,1,2,5,8, \ldots$ i which each term is the sum of the two previous terms. $\mathrm{u} 2(10)=5$
e) $\mathbf{u 3}(10)=1.61905$. The ratios of successive terms of the Fibonac sequence converge to the golden ratio.

