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Mathematical Methods (CAS) 2002 Examination 2 
solutions Q 4

Question 4

The first part of this question is conceptual, 15 + 6sin() will have a 
maximum value of 15 + 6*1 = 21, and a minimum value of 15 - 6*1 = 9. 
It is useful to draw a graph for a.ii:

#1:
          ⎛ π·t ⎞
15 + 6·SIN⎜⎯⎯⎯⎯⎯⎟
          ⎝  3  ⎠

#2:
     ⎛          ⎛ π·t ⎞       ⎞
SOLVE⎜15 + 6·SIN⎜⎯⎯⎯⎯⎯⎟ = 9, t⎟
     ⎝          ⎝  3  ⎠       ⎠

#3:
     9           3 
t = ⎯⎯⎯ ∨ t = - ⎯⎯⎯
     2           2 

Thus, the required value is t = 9/2 = 4.5 seconds. 

This value can also be found simply from a knowledge of 
transformations and the sin function. The first minimum value of the 
basic sine function for positive t occurs when t = 3¹/2, sin(¹t/3) is 
obtained from sin(t) by a horizontal dilation of factor 3/¹, so the 
first minimum of sin(¹t/3), and hence 15+6sin(¹t/3),will occur at 3¹/2
*3/¹ = 9/2 =4.5.This approach is quite general for functions of this 
type.

For the next parts of the question, the use of a defined function is 
helpful:

#4:
             0.04·t    ⎛ π·t ⎞
y(t) ≔ 15 + e      ·SIN⎜⎯⎯⎯⎯⎯⎟
                       ⎝  3  ⎠

A graph is again useful:
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#5: y(t) = 6

there are two solutions between 55 and 60, which seem to be around 58 
and 59 respectively:

#6: NSOLVE(y(t) = 6, t, 0, 60)

#7: t = 59.03217732

the number of times the platform is exactly 15 metres above the ground 
from t = 40 to t = 59 can be determined by counting from the graph:

This occurs 6 times. To find the time from when the ride starts until 
the platform first reaches 24 metres above the ground consider the 
following graph, and solve numerically over a  suitable interval:
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#8: NSOLVE(y(t) = 24, t, 50, 60)

#9: t = 55.7419759

#10: y'(t)

#11:

      ⎛      ⎛ π·t ⎞        ⎛ π·t ⎞ ⎞
      ⎜ π·COS⎜⎯⎯⎯⎯⎯⎟     SIN⎜⎯⎯⎯⎯⎯⎟ ⎟
 t/25 ⎜      ⎝  3  ⎠        ⎝  3  ⎠ ⎟
e    ·⎜⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ + ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎟
      ⎝       3              25     ⎠

for part ii. the graph above shows that the platform is closest to the 
ground over its domain when t is between 55 and 60 seconds, and closer 
to 60 seconds.Hence the equation y'(t)= 0 can be solved numerically 
over this interval to find the corresponding value of t:the first and 
required time value is found by evaluating NSOLVE(y(t)=6,t,0,59)to 
obtain t = 58.03397161 or t = 58.03 correct to 2 decimal places.The 
second solution is found by evaluating:

#12: NSOLVE(y'(t) = 0, t, 55, 60)

#13: t = 58.5364579

or 58.54 seconds, correct to 2 decimal places. The corresponding 
distance (using the not rounded time value) is y(58.03397161) = y
(58.5364579)=

#14: 4.611189273

or 4.61 metres, correct to 2 decimal places.

The final part of the modelling problem applies to the function:

#15:
               0.04·t    ⎛ π·t ⎞
h(t) ≔ 15 + a·e      ·SIN⎜⎯⎯⎯⎯⎯⎟
                         ⎝  3  ⎠

From the graph of y(t) above, it can be seen that the maximum gradient 
will occur at the endpoint time value, t = 60.Including the parameter, 
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a (a positive constant), in the rule for h(t) will multiply the 
gradient by a scalar factor, compared with that of y(t),  but 
otherwise leave it unchanged.  Thus to ensure that h'(t) is never more 
than 11, it must be the case that a*y'(60) has a maximum value of 11:

#16: NSOLVE(a·y'(60) = 11, a)

#17: a = 0.9529219057

that is, a = 0.953, correct to 3 decimal places.
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