Exponential Functions and the Natural Logarithm Student Activity

Open the TI-Nspire document Exponential_Functions_and_the_Natural_Logarithm.tns.

The purpose of this activity is to study the relative growth rate of exponential functions of the form $f(x) = b^x$, to understand their connection to natural logarithms, and to understand more about the natural exponential function.

Move to page 1.2.

Name _____ Class

1.1 1.2 2.1 ▶ Exponentirev	rad 📘 🗙							
CALCULUS								
Exponential Functions								
And The Natural Logarithm								

Press ctrr ▶ and ctrr ↓ to navigate through the lesson.

An exponential function with base *b* has the form $\mathbf{f}(x) = b^x$, where *b* is any positive real number. If b = 1, **f** is a constant function with $\mathbf{f}(x) = 1$ and not very interesting. We will be more interested in exponential functions with $b \neq 1$.

The relative growth rate of any function **f** at the value *x* is simply the ratio of its rate of change or slope, **f**'(*x*), to its value **f**(*x*), that is, $\frac{\mathbf{f}'(x)}{\mathbf{f}(x)}$. For example, a linear function, $\mathbf{f}(x) = mx + b$, has a constant rate of change, $\mathbf{f}'(x) = m$ (the slope of the line). The relative growth rate of a linear function at *x* is given by the expression $\frac{m}{mx + b}$. An exponential function has an amazing and unexpected relative growth rate.

- 1. For b = 2, use the up/down arrows at the lower left of the screen to move the point *x* along the axis. At the bottom of the page, observe the slope at *x*, the value of b^x , and the ratio $\frac{\text{slope at } x}{x}$.
 - a. What happens to the slope at x and the value of b^x when you move x to the right of 1?
 - b. What happens to the ratio when you move *x* to the right of 1?
 - c. What happens to the slope at x and the value of b^x when you move x to the left of 1?
 - d. What happens to the ratio when you move x to the left of 1?

Exponential Functions and the Natural Logarithm Student Activity

- 2. Use the up/down arrows at the upper left to change the base of the exponential function. Set b = 3.
 - a. Move the value *x* along the axis and observe the ratio. Describe what happens to the relative growth rate as *x* varies.
 - b. Try other values for *b*. What happens to the relative growth rate as *x* varies, for any set value of *b*?
 - c. As b increases, what happens to the relative growth rate of the exponential function?
 - d. Is the relative growth rate ever 0? If so, for what value(s) of b?
 - e. Is the relative growth rate ever negative? If so, for what value(s) of b?

Move to page 2.1.

3. For any value of *b*, the constant relative growth rate of the exponential function $\mathbf{f}(x) = b^x$ is called the natural logarithm of *b*, abbreviated ln(*b*). Use the arrow keys to change the value of *b* and complete the following table of corresponding values for ln(*b*).

b	0.1	0.2	0.4	0.5	1	2	2.5	3	5
ln(<i>b</i>)									

- a. Explain what happens to the graph of $y = f(x) = b^x$ as b increases and is greater than 1.
- b. Explain what happens to the graph of $y = \mathbf{f}(x) = b^x$ as *b* becomes less than 1.
- c. Explain the value of ln(1) geometrically.
- d. A student claims that you can also find $\ln(b)$, the natural logarithm of *b*, by just looking at the slope of the graph of $y = \mathbf{f}(x) = b^x$ at x = 0. Is this correct? Why or why not?
- 4. Find the following natural logarithms using the up/down arrows for these values of *b*.
 ln(2.6) = _____ ln(2.7) = _____ ln(2.8) = _____

There is a value *b* such that ln(b) = 1. The exact value of this special number is labeled *e*.

Exponential Functions and the Natural Logarithm Student Activity

5. The value of *e* lies between two of these values of *b*: 2.6, 2.7, and 2.8. Which two? Explain your reasoning.

Move to page 2.2.

- 6. Is e smaller or larger than 2.75? Explain your reasoning.
- 7. Use this Calculator page to evaluate the natural logarithm in search of the closest three-decimalplace approximation to *e* you can make.
 - a. What is your (three-decimal-place) approximation?
 - e ≈ _____

Every exponential function of the form $\mathbf{f}(x) = b^x$ has constant relative growth rate $\frac{\mathbf{f}'(x)}{\mathbf{f}(x)} = \ln(b)$. The natural exponential function has a constant relative growth rate of exactly 1.

- b. What is the base of the natural exponential function $f(x) = b^x$?
- c. What is its derivative f'(x)?