Exponential Functions and the Natural Logarithm

Name
Student Activity Class

Open the TI-Nspire document
Exponential_Functions_and_the_Natural_Logarithm.tns.

The purpose of this activity is to study the relative growth rate of exponential functions of the form $\mathbf{f}(x)=b^{x}$, to understand their connection to natural logarithms, and to understand more about the natural exponential function.

$\begin{array}{llll}1.1 & 1.2 & 2.1 \text { Exponenti-rev } \quad \text { RAD } \square \times\end{array}$

 CALCULUSExponential Functions
And The Natural Logarithm

Move to page 1.2.

Press ctrl and ctrl \langle to navigate through the lesson.
An exponential function with base b has the form $f(x)=b^{x}$, where b is any positive real number. If $b=1, f$ is a constant function with $f(x)=1$ and not very interesting. We will be more interested in exponential functions with $b \neq 1$.

The relative growth rate of any function \mathbf{f} at the value x is simply the ratio of its rate of change or slope, $\mathbf{f}^{\prime}(x)$, to its value $\mathbf{f}(x)$, that is, $\frac{\mathbf{f}^{\prime}(x)}{\mathbf{f}(x)}$. For example, a linear function, $\mathbf{f}(x)=m x+b$, has a constant rate of change, $\mathrm{f}^{\prime}(x)=m$ (the slope of the line). The relative growth rate of a linear function at x is given by the expression $\frac{m}{m x+b}$. An exponential function has an amazing and unexpected relative growth rate.

1. For $b=2$, use the up/down arrows at the lower left of the screen to move the point x along the axis. At the bottom of the page, observe the slope at x, the value of b^{x}, and the ratio $\frac{\text { slope at } x}{b^{x}}$.
a. What happens to the slope at x and the value of b^{x} when you move x to the right of 1 ?
b. What happens to the ratio when you move x to the right of 1 ?
c. What happens to the slope at x and the value of b^{x} when you move x to the left of 1 ?
d. What happens to the ratio when you move x to the left of 1 ?

Fin Exponential Functions and the Natural Logarithm Student Activity

2. Use the up/down arrows at the upper left to change the base of the exponential function. Set $b=3$.
a. Move the value x along the axis and observe the ratio. Describe what happens to the relative growth rate as x varies.
b. Try other values for b. What happens to the relative growth rate as x varies, for any set value of b ?
c. As b increases, what happens to the relative growth rate of the exponential function?
d. Is the relative growth rate ever 0 ? If so, for what value(s) of b ?
e. Is the relative growth rate ever negative? If so, for what value(s) of b ?

Move to page 2.1.

3. For any value of b, the constant relative growth rate of the exponential function $\mathbf{f}(x)=b^{x}$ is called the natural logarithm of b, abbreviated $\ln (b)$. Use the arrow keys to change the value of b and complete the following table of corresponding values for $\ln (b)$.

b	0.1	0.2	0.4	0.5	1	2	2.5	3	5
$\ln (b)$									

a. Explain what happens to the graph of $y=\mathbf{f}(x)=b^{x}$ as b increases and is greater than 1 .
b. Explain what happens to the graph of $y=\mathbf{f}(x)=b^{x}$ as b becomes less than 1 .
c. Explain the value of $\ln (1)$ geometrically.
d. A student claims that you can also find $\ln (b)$, the natural logarithm of b, by just looking at the slope of the graph of $y=\mathbf{f}(x)=b^{x}$ at $x=0$. Is this correct? Why or why not?
4. Find the following natural logarithms using the up/down arrows for these values of b.
$\ln (2.6)=$ \qquad $\ln (2.7)=$ \qquad $\ln (2.8)=$ \qquad
There is a value b such that $\ln (b)=1$. The exact value of this special number is labeled e.

(13) Exponential Functions and the Natural Logarithm Student Activity

5. The value of e lies between two of these values of $b: 2.6,2.7$, and 2.8. Which two? Explain your reasoning.

Move to page 2.2.

6. Is e smaller or larger than 2.75? Explain your reasoning.
7. Use this Calculator page to evaluate the natural logarithm in search of the closest three-decimalplace approximation to e you can make.
a. What is your (three-decimal-place) approximation?
$e \approx$ \qquad

Every exponential function of the form $\mathbf{f}(x)=b^{x}$ has constant relative growth rate $\frac{\mathbf{f}^{\prime}(x)}{\mathbf{f}(x)}=\ln (b)$. The natural exponential function has a constant relative growth rate of exactly 1.
b. What is the base of the natural exponential function $\mathbf{f}(x)=b^{x}$?
c. What is its derivative $\mathrm{f}^{\prime}(x)$?

