Laws of Sines	and Cosines
LawSineCosine.tns	

Name	
Class	

Problem 1 – Review of Geometry

- What do SAS, ASA, SAA, SAS, SSS, and SSA mean?
- Which one does not always work?

Problem 2 – Proof of the Law of Sines

Read the proof of the Law of Sines on pages 2.1–2.3. The angle C refers to the angle ACD.

• Move point *C* so that it is an acute angle. Does the Law of Sines still hold? Explain.

Problem 3 – ASA and SAA cases

On pages 3.2 and 3.3 use the **Calculate** tool and the formula on the screen to find the length of *b*. Use the **Length** tool to check your answer.

• Then drag point C. How does it affect your answer?

- Case 1: *b* = _____
- Case 2: *b* = _____

Problem 4 – Law of Sines Problem

Use the Law of Sines to solve the following problem on page 4.2.

A surveyor took two angle measurements to the peak of the mountain 500m apart. What is the height of the mountain?

Laws of Sines and Cosines

Problem 5 – Proof of the Law of Cosines

Read the proof of the Law of Cosines on pages 5.1–5.3. Use algebra to complete the proof from the 4 pieces of information.

A. Substitute 1 into 2 and simplify.	1. <i>d</i> = <i>a</i> + e
B. Solve 3 for h^2 and 4 for <i>e</i> .	2. $c^2 = d^2 + h^2$
C. Substitute the results from B into A.	3. $b^2 = e^2 + h^2$
	4. $\cos(C) = -\frac{e}{b}$

The result is the Law of Cosines.

• On page 5.4, move point *C* so that it is an acute angle. Does the Law of Cosines still hold? Explain.

Problem 6 – SAS and SSS Cases

On pages 6.2 and 6.5, use the **Calculate** tool and the formula on the screen to find the length of *c* or the measure of angle *C*. Use the Length tool to check your answers.

- Then drag point C. How does dragging point C affect your answer?
- Case 3: *c* = _____
- What trig function must be used in Case 4 to calculate the angle?
- Case 4: m∠C = _____

Problem 7 – Law of Cosines Problem

Use the Law of Cosines to solve the following problem. The diagram is on page 7.3.

A Major League baseball diamond is a square with each side measuring 90 feet. The pitching mound is located 60.5 feet from home plate on a line joining home plate and second base.

- a) How far is it from the pitching mound to first base? Second base?
- b) Facing home plate, what angle will the pitcher need to turn to face first base?
- c) If a short stop is standing in the middle of 2^{nd} and 3^{rd} base and 12ft into the outfield, how far is the player standing from home plate where the ball is to be thrown?