Translations: Lesson 6 Corresponding Sides Name \qquad Student Activity \qquad

In this lesson, you will investigate the corresponding sides (not their lengths) of translated triangles and look for patterns. Open the document: Translations.tns.
It is important that one of the Translations Tours be done before any Translations lessons.

Move to page 1.3. ($\mathrm{ctrl} \backslash$ two times)
On the handheld, press atri and atril to navigate through the pages of the lesson.
(On the iPad ${ }^{\circledR}$, select the page thumbnail in the page sorter panel.)

1. Press menu to open the menu.
(On the iPad, tap the wrench icon
 to open the menu.) Press 1 (1: Templates), 4 (4: Grid).

2. Translate $\triangle \mathrm{ABC}$ to the right 5 units by pressing the right arrow () 5 times.

Then click on $\Delta \Delta$ or press \boldsymbol{T}. Zoom Θ, \ominus in (\square) or out (\square) as needed.
a. Look at corresponding sides, $\overline{A B}$ and $\overline{A^{\prime} B^{\prime}}$. We have already established that these two segments are congruent (have the same length).

What else appears to be true about these two segments?
b. Look at corresponding sides, $\overline{B C}$ and $\overline{B^{\prime} C^{\prime}}$. We have already established that the two segments are congruent (have the same length). What else appears to be true about these two segments?
c. Look at corresponding sides, $\overline{C A}$ and $\overline{C^{\prime} A^{\prime}}$. We have already established that these two segments are congruent (have the same length). What else appears to be true about these two segments?
\qquad
d. If segments (lines) are to be parallel, what must be true about their slopes?
e. Calculate the slope of each pair of corresponding sides. Record your answers as fractions:

Slope of $\overline{A B}=$ \qquad . Slope of $\overline{A^{\prime} B^{\prime}}=$ \qquad .

Slope of $\overline{B C}=$ \qquad . Slope of $\overline{B^{\prime} C^{\prime}}=$ \qquad .

Slope of $\overline{C A}=$ \qquad . Slope of $\overline{C^{\prime} A^{\prime}}=$ \qquad .
f. Based upon the results in part e above, is each pair of corresponding sides parallel?
g. This is not enough evidence to prove this conjecture for all triangles. Let's investigate more examples.
3. Press menu to open the menu.
(On the iPad, tap the wrench icon to open the menu.)
Press 1 (1: Templates), 6 (6: Slopes Sides).
Translate $\triangle A B C$ up 3 units by pressing the up arrow ($\boldsymbol{\Delta}$) 3 times and to the left 6 units by pressing the left arrow ($\mathbf{~}) 6$ times.
Then click on $\Delta \Delta$ or press $⿴$. Zoom \oplus, \ominus in (\oplus) or out (\square) as needed.
a. Record the Original slopes (first slopes displayed) in the first row of the following table.

Look for patterns.

Translate Up 3,Left 6	$\mathrm{m}(\overline{A B})$	$\mathrm{m}(\overline{B C})$	$\mathrm{m}(\overline{C A})$	$\mathrm{m}\left(\overline{A^{\prime} B^{\prime}}\right)$	$\mathrm{m}\left(\overline{B^{\prime} C^{\prime}}\right)$	$\mathrm{m}\left(\overline{C^{\prime} A^{\prime}}\right)$
Original						
Figure 1						
Figure 2						

\qquad
b. Investigate and mentally make note of the slopes by grabbing and moving each of the three vertices of $\triangle \mathrm{ABC}(\triangle, B, B)$ to create different shaped triangles.
Record a set of data observed in row "Figure 1" in the previous table.
Repeat and move each of the three vertices and record a set of data in row "Figure 2 " in the previous table.
Look for patterns among the slopes of corresponding sides.
c. Using the pattern observed in the previous table, state a conjecture.
4. Reset the page. Press

Reset (ctrl dell).
Repeat what was done in exercise 3, but with each person in the group doing a different translation. Each person in the group should choose one from the following:
i) Translate $\triangle \mathrm{ABC}$ down 4 units and to the right 2 units.
ii) Translate $\triangle \mathrm{ABC}$ up 5 units.
iii) Translate $\triangle \mathrm{ABC}$ down 1 unit and to the left 4 units.
iv) Translate $\triangle A B C$ up 6 units and to the left 3 units.

Then click on $\Delta \Delta$ or press T). Zoom $\xlongequal{\oplus}$ in (\square) or out (\square) as needed.
a. Record the Original slopes (first slopes displayed) in the first row of the following table. Look for patterns.

Translate i ii iii iv	$\mathrm{m}(\overline{A B})$	$\mathrm{m}(\overline{B C})$	$\mathrm{m}(C A)$	$\mathrm{m}\left(\overline{A^{\prime} B^{\prime}}\right)$	$\mathrm{m}\left(\overline{B^{\prime} C^{\prime}}\right)$	$\mathrm{m}\left(\overline{C^{\prime} A^{\prime}}\right)$
Original						
Figure 1						
Figure 2						

\qquad
b. Investigate and mentally make note of the slopes by grabbing and moving each of the three vertices of $\Delta \mathrm{ABC}(\mathbb{A}, \boldsymbol{B}, \mathbb{C})$ to create different shaped triangles.

Record a set of data observed in row "Figure 1" in the previous table.
Repeat and move each of the three vertices and record a set of data in row "Figure 2" in the previous table.
Look for patterns among the slopes of corresponding sides.
c. Using the pattern observed in the previous table, is your conjecture still true?
5. Many different triangles have been translated in several directions. Generalize explorations and investigations by responding to the following:
If a triangle is translated, what appears to be true about the corresponding sides of the pre-image and image triangles?
6. $\triangle D E F$ has been translated down 7 units and to the right 8 units. Answer the following.
a. State three pairs of segments that are parallel: \qquad
b. If $\overline{D E}$ has a slope of $-\frac{4}{7}$, what other segment has a slope of $-\frac{4}{7}$? \qquad
c. If $\overline{E F}$ is horizontal, what other segment will be horizontal? \qquad

What is its slope? \qquad
d. If $\overline{F^{\prime} D^{\prime}}$ has a slope that is undefined, what other segment will have a slope that is undefined?
\qquad
What word can be used to describe $\overline{F^{\prime} D^{\prime}}$? \qquad

