

Translations: Lesson 6 Corresponding Sides Name _

Student Activity

Class

In this lesson, you will investigate the corresponding sides (not their lengths) of translated triangles and look for patterns.

Open the document: Translations.tns.

It is important that one of the Translations Tours be done before any Translations lessons.

PLAY INVESTIGATE EXPLORE DISCOVER

Move to page 1.3. (ctrl ▶ two times)

On the handheld, press [ctrl] ▶ and [ctrl] ◀ to navigate through the pages of the lesson. (On the iPad[®], select the page thumbnail in the page sorter panel.)

1. Press menu to open the menu.

(On the iPad, tap the wrench icon to open the menu.)

Press 1 (1: Templates), 4 (4: Grid).

2. Translate \triangle ABC **to the right 5 units** by pressing the right arrow (**)** 5 times.

Then click on or press T. Zoom in (+) or out (-) as needed.

a. Look at corresponding sides, \overline{AB} and $\overline{A'B'}$. We have already established that these two segments are congruent (have the same length).

What else appears to be true about these two segments?

b. Look at corresponding sides, \overline{BC} and $\overline{B'C'}$. We have already established that these two segments are congruent (have the same length).

What else appears to be true about these two segments?

c. Look at corresponding sides, \overline{CA} and $\overline{C'A'}$. We have already established that these two segments are congruent (have the same length).

What else appears to be true about these two segments?

Translations: Lesson 6 Corresponding Sides Name

Student Activity

Class _____

- d. If segments (lines) are to be parallel, what must be true about their slopes?
- e. Calculate the slope of each pair of corresponding sides. Record your answers as fractions:

Slope of $\overline{AB} = \underline{\hspace{1cm}}$. Slope of $\overline{A'B'} = \underline{\hspace{1cm}}$.

Slope of $\overline{BC} =$ _____. Slope of $\overline{B'C'} =$ ____.

Slope of $\overline{CA} =$ _____. Slope of $\overline{C'A'} =$ ____.

- f. Based upon the results in part e above, is each pair of corresponding sides parallel?
- g. This is not enough evidence to prove this conjecture for all triangles. Let's investigate more examples.
- 3. Press menul to open the menu.

(On the iPad, tap the wrench icon

Press 1 (1: Templates), 6 (6: Slopes Sides).

Translate $\triangle ABC$ up 3 units by pressing the up arrow (\triangle) 3 times and to the left 6 units by pressing the left arrow (4) 6 times.

a. Record the Original slopes (first slopes displayed) in the first row of the following table. Look for patterns.

Translate	$m(\overline{AB})$	$m(\overline{BC})$	$m(\overline{CA})$	$m(\overline{A'B'})$	$m(\overline{B'C'})$	$m(\overline{C'A'})$
Up 3,Left 6						
Original						
Figure 1						
Figure 2						

Translations: Lesson 6 Corresponding Sides Name _

Student Activity

Class	
Jiaoo	

b. Investigate and mentally make note of the slopes by grabbing and moving each of the three vertices of Δ ABC (\mathbb{A} , \mathbb{B} , \mathbb{C}) to create different shaped triangles.

Record a set of data observed in row "Figure 1" in the previous table.

Repeat and move each of the three vertices and record a set of data in row "Figure 2" in the previous table.

Look for patterns among the slopes of corresponding sides.

c. Using the pattern observed in the previous table, state a conjecture.

4. Reset the page. Press Reset ([ctrl] del).

Repeat what was done in exercise 3, but with each person in the group doing a different translation. Each person in the group should choose one from the following:

- i) Translate Δ ABC down 4 units and to the right 2 units.
- ii) Translate Δ ABC up 5 units.
- iii) Translate Δ ABC down 1 unit and to the left 4 units.
- iv) Translate Δ ABC up 6 units and to the left 3 units.

Then click on or press T). Zoom in (+) or out (-) as needed.

a. Record the Original slopes (first slopes displayed) in the first row of the following table. Look for patterns.

Translate	$m(\overline{AB})$	$m(\overline{BC})$	m(CA)	$m(\overline{A'B'})$	$m(\overline{B'C'})$	$m(\overline{C'A'})$
i ii iii iv						
Original						
Figure 1						
Figure 2						

Translations: Lesson 6 Corresponding Sides Name _____

Class _____

b. Investigate and mentally make note of the slopes by grabbing and moving each of the three vertices of \triangle ABC (\boxed{A} , \boxed{B} , \boxed{C}) to create different shaped triangles.

Record a set of data observed in row "Figure 1" in the previous table.

Repeat and move each of the three vertices and record a set of data in row "Figure 2" in the previous table.

Look for patterns among the slopes of corresponding sides.

- c. Using the pattern observed in the previous table, is your conjecture still true?
- 5. Many different triangles have been translated in several directions.
 Generalize explorations and investigations by responding to the following:
 If a triangle is translated, what appears to be true about the corresponding sides of the pre-image and image triangles?

- 6. ΔDEF has been translated down 7 units and to the right 8 units. Answer the following.

 - b. If \overline{DE} has a slope of $-\frac{4}{7}$, what other segment has a slope of $-\frac{4}{7}$?
 - c. If $\overline{\it EF}$ is horizontal, what other segment will be horizontal?

What is its slope? _____

d. If $\overline{F'D'}$ has a slope that is undefined, what other segment will have a slope that is undefined?

What word can be used to describe $\overline{F'D'}$? _____