Matrices – Act 1

Answers

7 8 9 10 11 12

Addition & Subtraction

Start a new document and insert a calculator application.

The first matrix will be defined as: mata

It is not necessary to have 'mat' at the start of the variable name, however it will help immediately identify which of your defined variables is a matrix.

In this document a matrix is denoted as: [A].

One way to define a variable is to use ":="

Type: mata:=

Use the maths template and select the 2 x 2 matrix template (shown opposite)

Define matrix A as: mata:= $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

Use the [TAB] key to navigate around the matrix.

Repeat the above process to create a second matrix called Matrix B

Add the two matrices together:

mata + matb

matb := $\begin{bmatrix} e & f \\ g & h \end{bmatrix}$

Note:

To avoid typing the variable name again, press the variable button and select the variable name from the list.

(C) Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Author: P. Fox

•	1.1	Þ			*[)oc -	~	(÷		RAD	<[] ×
m	ata:	=										
	믐		√ō	%	e	600	{0,0 0,0	88	8	8		
	0	011	[83]	[00]		8000	₽°.	Ů	ᇷ	훕		ι.
	뿖	[international content of the second	040	lim¤ ¤≁¤	•							
												\sim

◀ 1.1 ▶	*Doc ▽	RAI	× (] 🗙
$mata:=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$		$\begin{bmatrix} a \\ c \end{bmatrix}$	$\begin{bmatrix} b \\ d \end{bmatrix}$
$\mathbf{k}atb := \begin{bmatrix} e & f \\ g & h \end{bmatrix}$		e g	$\begin{bmatrix} f \\ h \end{bmatrix}$
mata+	ata atb		

Teachers Teaching with Technology"

TI-Nspire

Questions

1. Write down the rule for adding two: 2 x 2 matrices.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

∢ 1.1 ▶	*Doc 🗢	RAD 🚺 🗙
$matc:=[m \ n]$		$\begin{bmatrix} m & n \end{bmatrix}$
matd:=[p q]		$\begin{bmatrix} p & q \end{bmatrix}$
mata+matb		$\begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$
I		

2. Use your rule to answer the following:

a)
$$\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} + \begin{bmatrix} 5 & 7 \\ 2 & 8 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 6 & 9 \end{bmatrix}$$

c) $\begin{bmatrix} 5 & -2 \\ 1 & -3 \end{bmatrix} + \begin{bmatrix} 6 & 8 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 11 & 6 \\ 2 & -1 \end{bmatrix}$

3. Check your answers using the CAS calculator.

Commutative Law:

b)	5 2	$\begin{bmatrix} 7 \\ 8 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix}$	$ 3 \\ 1 $	
d)	6 1	$\begin{vmatrix} 8 \\ 2 \end{vmatrix} + \begin{bmatrix} 5 \\ 1 \end{vmatrix}$	$ \begin{vmatrix} -2 \\ -3 \end{vmatrix} = \begin{bmatrix} 11 & 6 \\ 2 & -1 \end{vmatrix} $	

a+b=b+a

4. Determine if the commutative law (above) applies to matrices. Yes ... it applies.

Associative Law:
$$a + (b + c) = (a + b) + c$$

- 5. Determine if the associative law (above) applies to matrices. Yes ... it applies.
- 6. Add [A] to itself. ie: mata + mata. Check this answer against 2 × [A].

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 2a & 2b \\ 2c & 2d \end{bmatrix} = 2 \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

7. Write down a general rule for $n \times [A]$

$$n \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} na & nb \\ nc & nd \end{bmatrix}$$

8. Explore the subtraction of matrices. *Use the previous questions as a guide for your explorations.*

Answers will vary, students should identify however that the commutative and associative laws do not apply for subtraction.

© Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.

Dimensions

Two new matrices need to be defined: matc and matd

matc :=
$$\begin{bmatrix} m & n \end{bmatrix}$$

matd := $\begin{bmatrix} p \\ q \end{bmatrix}$

₹ 1.1 ►	*Doc マ	RAD 🚺 🔀	(
matc:=[m	<i>n</i>]	[<i>m n</i>]]
matd:=[p	$_q]$	$\begin{bmatrix} p & q \end{bmatrix}$	
mata+	mata matb matc matd	Ľ	r

9. Explore the addition and subtraction of matrices with different dimensions. Record the results for each of the following:

None of the results below can be computed. Each will return a result 'dimension error'. Students should identify that matrices must be the same dimension in order to add or subtract.

a)	[A] + [C] =	b)	[C] + [A] =
c)	[A] + [D] =	d)	[D] + [A] =

e) Comment on your findings with regards to addition and subtraction of matrices with different dimensions.

[©] Texas Instruments 2016. You may copy, communicate and modify this material for non-commercial educational purposes provided all acknowledgements associated with this material are maintained.